Real Analysis Note

青冥

2024.8.23 - 2025.2.2

目录

1	Mea	asure Theory	2
	1.1	Preliminaries	2
	1.2	Basic Conception	3
	1.3	Exterior Measure	4
	1.4	Measurable Set	6
	1.5	Non-measurable Set	9
	1.6	Measurable Functions	9
	1.7	Littlewood's Three Principles	14
2	Leb	pesgue Integration Theory	16
	2.1	The Construction of New Integration Theory	16
	2.2	The Property of Lebesgue Integration	18
	2.3	L^p Space	20
	2.4	Fubini Theorem	24
	2.5	Applications of Fubini Theorem	25
3	Diff	ferentiation and Integration	28
	3.1	Differentiation of the Integral	28
	3.2	Approximation to the Identity	32
	3.3	Functions with bounded Variation	34
	3.4	Cantor-Lebesgue Function	38
	3.5	Absolutely Continuous Functions	39
4	Abstract Measure		
	4.1	Measure and Integration	41
	4.2	Exterior Measure and Premeasure	42
	4.3	Product Measure and Fubini Theorem	46
	4.4	Signed Measure	48

1 Measure Theory

1.1 Preliminaries

Proposition 1.1. 设函数 $f: \mathbb{R} \to \mathbb{R}$, 则

$$\bigcup_{k=1}^{\infty} \{ |f(x)| \le l \} = \mathbb{R}, \quad \bigcap_{k=1}^{\infty} \{ |f(x)| \le \frac{1}{k} \} = \{ f(x) = 0 \}.$$

Definition 1.1: 上限集和下限集

设 $\{A_k\}_{k=1}^{\infty}$ 为一列集合.

1. 若 $A_1 \supseteq A_2 \supseteq \cdots$,则称集合列是递降集合列, 记 $A_j \searrow$,并定义极限集为

$$\lim_{k\to\infty}A_k=\bigcap_{k=1}^\infty A_k.$$

2. 若 $A_1 \subseteq A_2 \subseteq \cdots$, 则称集合列是递增集合列, 记 $A_j \nearrow$, 并定义极限集为

$$\lim_{k \to \infty} A_k = \bigcup_{k=1}^{\infty} A_k.$$

3. 定义上限集和下限集如下

$$\limsup_{k \to \infty} A_k = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k.$$

$$\liminf_{k \to \infty} A_k = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} A_k.$$

Proposition 1.1: 上下限集合的等价描述

 $\limsup_{k \to \infty} A_k = \{x : 存在无穷多个k_j, 使得x \in A_{k_j}\}.$

 $\liminf_{k\to\infty}A_k=\{x: \text{存在整数}N>0, \exists k>N, \text{都有}x\in A_k\}.$

Definition 1.1. 集合 F_{σ} 为可数个闭集的并, 集合 G_{δ} 为可数个开集的交.

Proposition 1.2: 收敛的集合表示

设 f, f_1, \cdots 是一列函数, 则

$$\{x \in \mathbb{R}^n : \lim_{k \to \infty} f_k = f\} = \bigcap_{l=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{j=k}^{\infty} \{x \in \mathbb{R}^n : |f_j - f| \le \frac{1}{l}\}.$$

1.2 Basic Conception

Definition 1.2: σ -代数

若 X 为非空集合, $\mathscr{A} \subset 2^X$, 称 $\mathscr{A} \in X$ 上的 σ-代数, 若 \mathscr{A} 满足以下条件:

- 1. $\emptyset \in \mathscr{A}$.
- 2. 若 $A \in \mathcal{A}$, 则 $A^c \in \mathcal{A}$.
- 3. $\vec{A} A_n \in \mathcal{A}, n = 1, \dots, \mathbb{M} \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}.$

Remark. 有条件 1 和 2, 自然有全集 $X \in \mathcal{A}$, 由条件 2 和 3, 结合 De Morgan 律, 有 \mathcal{A} 对可数交封闭.

Definition 1.2 (生成 σ -代数). 设 $\mathscr{F} \subseteq 2^X$, 称包含 \mathscr{F} 的最小 σ -代数为 \mathscr{F} 生成的 σ -代数, 记作 $m(\mathscr{F})$.

Remark. 任意一个 σ -代数 $\mathscr{A} \supseteq \mathscr{F}$, 都能推出, $\mathscr{A} \supseteq m(\mathscr{F})$.

Definition 1.3: Borel 代数和 Borel 集

 \mathbb{R}^n 中的开集全体生成的最小 σ -代数称为 Borel σ -代数, 记作 \mathcal{B} , 其中的元素称为 Borel 集.

Example 1.1 (Borel 集). *Borel* 集是没法穷尽的, 但是有一些典型的构造. 首先 F_{σ} 集和 G_{δ} 集都是 *Borel* 集, 进一步的, 若定义 $F_{\sigma-\delta}$ 集为可数个 F_{σ} 集的交, $G_{\delta-\sigma}$ 集为可数个 G_{δ} 集的并. 那么这两个也是 *Borel* 集.

Theorem 1.1: ℝ 中开集的结构

ℝ 中的开集可以唯一的表示为至多可数个互不相交的开集的并.

Proof: 证明大致分三步, 首先用确界原理将单点膨胀为极大区间, 其次证明各个极大区间是要么相同, 要么不交的, 最后利用 ℚ 的稠密性可以证明这些极大区间是至多可数的即可. □

Remark. 若极大区间的端点是实数,则端点是不在开集中的,这是因为内点在膨胀后会与确界性的假设导出矛盾.

Definition 1.3 (almost disjoint). 几乎不交或是内部不交,指的是集合的内部 (interior) 没有交集.

Definition 1.4 (dyadic cube). 二进有理数指代形如 $\frac{p}{2^k}$, 其中 $p, k \in \mathbb{Z}$ 的数, \mathbb{R}^n 中以二进有理数为顶点的方体 (cube) 称为二进方体.

Remark. 也可以定义 $\Gamma_k = \{2^{-k}([0,1]^n + m) : m \in \mathbb{Z}^n\}$, 从而二进方体就是 $\bigcup_{k \in \mathbb{Z}} \Gamma_k$. 二进方体的性质很好, 里面的元素要么是几乎不交的, 要么是有包含关系的.

Theorem 1.2: \mathbb{R}^n 中开集的结构

 \mathbb{R}^n 中的非空开集一定可以表示为可数个几乎不交的闭方体的并.

Proof: 核心是做二进方体分解, 操作至多可数次后求并集, 就得到新的集合, 证明这个集合和原来的开集相等即可. □

Remark. 由于定理中说的是闭方体, 因此是被分解为可数个, 同时, 这个分解并不是唯一的.

1.3 Exterior Measure

Definition 1.4: Cantor set

Cantor 集是将 [0,1] 区间每次三等分并去掉中间的开集得到的集合, 其中每次得到的闭集记作 C_k , 那么 Cantor 集就可以记为 $\mathcal{C} = \bigcap_{k=1}^{\infty} C_k$. 而每次去除掉的开集就记为 G_k , 从

而 Cantor 开集就记为 $G = \bigcup_{k=1}^{\infty} G_k$.

Proposition 1.2. Cantor 集有一些性质, 列举如下:

- 1. C = [0, 1] G.
- 2. C 是非空闭集.
- 3. C 是完全集.
- 4. C 没有内点.
- 5. C 有连续统基数 (存在 [0,1] 到 C 的一一映射).
- 6. C 是零测集.

Proof: 1和2显然.

- 3. 取每一步同一区间的另一个端点就行了.
- 4. 最后的"区间"长度是趋于 0 的, 邻域会缩为独点.
- 5. 需要证明 C 在 3 进制下的表示, 这个证明需要用级数的分段估值, 然后用软一些的方法可以证明.

6. 计算开集部分的区间长度.

Definition 1.5: Cantor-Lebesgue 函数

C 上的 Cantor-Lebesgue 函数定义为

$$F(x) = \sum_{k=1}^{\infty} \frac{b_k}{2^k}, \quad \stackrel{\text{def}}{=} x = \sum_{k=1}^{\infty} \frac{a_k}{3^k} \in \mathcal{C}, \, \not \exists b_k = \frac{a_k}{2}.$$

Proposition 1.3. Cantor-Lebesgue 函数给出了 $\mathcal{C} \to [0,1]$ 的连续满射.

Proof: 其实要先说明 Cantor-Lebesgue 函数的良定性, 也就是对同一个变量, 其对应的函数值是唯一的. 这个可以用反证法, 然后可以发现只要有一位不同了, 后面的情况只要做不等式的简单估计就行了. 连续性就是定义验证, 然后漫射也是很容易看出来的. □

其实很有趣的是函数可以扩张到整个 [0,1] 区间上, 因为观察可以发现每个 Cantor 闭集的端点上的数在函数下的取值是一致的.

Definition 1.5 (类 Cantor 集). 将 [0,1] 区间在第 k 步去除每个构成区间中间的长度为 l_k 的 开区间, 其中 $k=1,\cdots$,并且满足

$$\sum_{k=1}^{\infty} 2^{k-1} l_k < 1,$$

最后得到的集合为类 Cantor 集 \hat{C} .

Proposition 1.4 (类 Cantor 集的性质). 列举如下:

- 1. 类 Cantor 集具有正测度.
- 2. 类 Cantor 集没有内点.
- 3. 类 Cantor 集是完全集.
- 4. 类 Cantor 集有不可数基数.

Proof: 证明是和 Cantor 集类似的, 区别在于从取端点变成了取中点, 以及完全集是可以证明为不可数的. □

在引入外测度之前, 叙述一个失败的例子.

Definition 1.6 (outer Jordan content). ℝ 上的 *Jordan* 外容量定义为

$$J_*(E) = \inf \sum_{k=1}^N |I_k|,$$

其中
$$\bigcup_{k=1}^{N} I_k \supseteq E$$
.

这个定义中的重要性质是, $J_*(E) = J_*(\bar{E})$. 从而构造出了大量的不可测集.

为了方便, 以下简记有限维矩体为 R, 有限维方体为 Q, 其中各个区间的开闭不影响. 用 |R| 代表矩体的体积.

Lemma 1.1. 若 $R = \bigcup_{k=1}^{N} R_k$, 其中的矩体是几乎不交的, 那么有 $|R| = \sum_{k=1}^{N} |R_k|$.

Lemma 1.2. 若 $R \subseteq \bigcup_{k=1}^{N} R_k$, 那么有 $|R| \leq \sum_{k=1}^{N} |R_k|$.

Definition 1.6: 外测度

设 $E \subseteq \mathbb{R}^n$, E 的外测度 m_* 定义为

$$m_*(E) = \inf\{\sum_{k=1}^{\infty} |Q_k| : E \subseteq \bigcup_{k=1}^{\infty} Q_k\}.$$

Remark. 这里用的定义是方体, 还可以用矩体或是球来定义, 其实是等价的. 这样定义的外测度的作用有限, 还需要一些基本的例子作为支撑.

Example 1.2. $m_*(Q) = |Q|$.

Proof: 一方面, 方体是自身的覆盖, 因此 $m_*(Q) \leq |Q|$. 另一方面, 由下确界的定义, 对任给的 $\varepsilon > 0$, 有覆盖 $Q_k, k = 1, \cdots$ 使得 $\sum\limits_{k=1}^{\infty} |Q_k| \leq |Q| + \varepsilon$, 将闭方体做有限膨胀, 得到开方体 $\widetilde{Q_k} \supseteq Q_k$, 且 $|\widetilde{Q_k}| \leq (1+\varepsilon)|Q_k|$, 最后用有限覆盖加上不等式就得到 $m_*(Q) \geq |Q|$.

Example 1.3. $m_*(R) = |R|$.

Proof: 证明中外测度大于等于体积的部分和上一段是类似的,而另一边则有一些区别. 策略是用二进方体做分解,分解以后将二进方体分为矩体边界附近的和其他的,然后对边界附近的方体做阶的估计就可以了.

上面关于外测度的内容还是比较朴素的,以下为外测度的一些基本性质.

Proposition 1.5 (外测度的基本性质). 列举如下:

- 1. 单调性. 若 $E_1 \subseteq E_2$, 则 $m_*(E_1) \le m_*(E_2)$.
- 2. 次可加性. $m_*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m_*(E_k)$. 3. 外正则性. $m_*(E) = \inf\{m*(G): E \subseteq G, G$ 是开集 $\}$.
- 4. 距离分离可加性. 设 $E = E_1 \cup E_2$, $d(E_1, E_2) > 0$, 则 $m_*(E) = m_*(E_1) + m_*(E_2)$.
- 5. 几乎不交方体分解. 若 $E = \bigcup_{k=1}^{\infty} Q_k$, 其中 Q_k 是几乎不交的方体, 那么有

$$m_*(E) = \sum_{k=1}^{\infty} |Q_k|.$$

6. 平移不变性. $m_*(E) = m_*(E+h), h \in \mathbb{R}^n$.

Proof: 逐条简述证明如下:

- 1. 有定义给出的方体覆盖即可.
- 2. 几何上不难想象. 用定义给出覆盖 $Q_j^{(k)}, j = 1, \cdots$ 使得 $\bigcup_{j=1}^{\infty} Q^{(k)_j} \supseteq E_k$, 并且有 $\sum_{j=1}^{\infty} Q_j^{(k)} \le$ $m_*(E_k) + \frac{\varepsilon}{2^k} \ \square \ \square.$
- 3. 经典处理, 用开集列逼近. 也就是 $Q_k \supseteq E$, 并且 $|Q_k| \le m_*(E) + \frac{1}{k}$. 这列开集的极限集就 是不等式所要的一边, 而另一边是由单调性得到.
- 4. 约定好无穷的情况后做有限的情况, 两个集合是距离分离的, 就可以把方体覆盖分为两堆, 此时用单调性就解决了一边, 而另一边就是直接的次可加性.
- 5. 次可加性导出一边后,另一边用方体收缩,得到分离的集合 $\widetilde{Q_k}, k=1,\cdots$,结合之前的性质 4,有

$$m_*(\bigcup_{k=1}^N \widetilde{Q_k}) = \sum_{k=1}^N |\widetilde{Q_k}| \le \sum_{k=1}^N |Q_k| - \varepsilon.$$

对 N 取极限再用单调性即可

6. 平移是双射, 用定义推即可.

Corollary 1.1:

若 G_k 为一列互不相交的开集,那么有

$$m_* \left(\bigcup_{k=1}^{\infty} G_k \right) = \sum_{k=1}^{\infty} m_*(G_k). \tag{1}$$

Proof: 用 \mathbb{R}^n 的结构定理.

1.4 Measurable Set

集合 E 被称为是 (Lebesgue) 可测的, 当其对任意 $\varepsilon > 0$, 都存在开集 \mathcal{O} 满足 $E \subseteq \mathcal{O}$, 且有

$$m_*(\mathcal{O} - E) \leq \varepsilon$$
.

Remark 1.1:

外测度是对任意一个 \mathbb{R}^n 的子集都有定义,但是接下来会看到测度是要有可数可加性的,而之前外测度的外正则性则未必可行,毕竟还有不可测集的出现.

Remark. 上面的定义只是拓扑空间上的定义方法, 在抽象测度中还有等价的定义方式.

Proposition 1.6 (Lebesgue 测度的性质). 1. 开集是可测的.

- 2. 外测度零测集可测.
- 3. 可数并可测.
- 4. 闭集可测.
- 5. 补集可测.
- 6. 可数交可测.

Proof: 以下逐个说明:

- 1. 由定义得.
- 2. 由外测度得外正则性 + 单调性得.
- 3. 设 $E = \bigcup_{j=1}^{\infty} E_j$, 由定义加上外正则性就有 $\mathcal{O}_j \supseteq E_j$, 使得 $m_*(\mathcal{O}_j E_j) < \frac{\varepsilon}{2^j}$.
- 4. 先证紧集可测. 扩为开集后, 差集部分由结构定理得到一个方体覆盖, 有限个方体覆盖有上界, 取极限后仍然有, 上界控制为 ε 就行.

- 5. 其实也是计算集合关系, 只要算差集部分, 得到零测集, 再并起来就行了.
- 用 De Morgan 律就行.
 这也就是说, £ 是一个 σ-代数.

Remark 1.2:

可以用闭集来等价的定义测度,即

若对任意的 $\varepsilon > 0$, 有闭集 $F \subseteq E$, 使得 $m_*(E - F) < \varepsilon$, 则称 E 可测. 证明在知道测度的基本性质后显然.

在已知测度的性质的基础下,可以证明 Lebesgue 可测和 Carathéodory 可测是等价的.

Definition 1.8: Carathéodory 可测

集合 E 是 Carathéodory 可测的, 若对任意集合 A, 都有

$$m_*(A) = m_*(E \cap A) + m_*(E^c \cap A).$$

Proposition 1.7. 在 \mathbb{R}^n 的标准拓扑下, Lebesque 可测和 Carathéodory 可测等价.

Proof: 若集合 E 是 Lebesgue 可测的, 那么对任意集合 A, 由次可加性, 有

$$m_*(A) \le m_*(A \cap E) + m_*(A \cap E^c).$$

另一方面, 对任意 $\varepsilon > 0$, 由外正则性, 有开集 $\mathcal{O}_{\varepsilon} \supseteq A$, 使得 $m_*(\mathcal{O}_varepsilon) \le m_*(A) + \varepsilon$, 接下来由单调性就得到想要的结果.

若集合 E 是 Carathéodory 可测的, 那么由外正则性, 选开集 $A_{\varepsilon} \supseteq E$, 接下来的过程是显然的.

Theorem 1.3: 测度的可数可加性

若 E_1, \cdots 是一列不交的集合,且 $E \bigcup_{k=1}^{\infty} E_j$,则

$$m(E) = \sum_{k=1}^{\infty} m(E_j).$$

Proof: 首先做有界的情况. 用可测的闭集定义, 用外测度的分离有限可加, 再取极限得到一边 的不等式, 另一边用次可加性就行. 而一般的情况就是熟悉的分层技术.

Theorem 1.4: 测度的连续性

设 $E_i, j = 1, \cdots$ 是一列可测集, 则

Proof: $\[:G_j = E_{j+1} - E_j, \] \]$

$$m(E) = m(\bigcup_{k=1}^{\infty} E_j) = m((\bigcup_{k=1}^{\infty} G_j) \cup E_1)$$

$$= m(E_1) + \sum_{k=1}^{\infty} m(G_j) = m(E_1) + \sum_{k=1}^{\infty} (m(E_{j+1}) - m(E_j))$$

$$= \lim_{N \to \infty} m(E_N).$$

Remark. 可测集的差集是可测的, 通过集合计算可以看出. 第二个定理中的条件是不可去的, 因为有例子 $E_n = (n, \infty) \subseteq \mathbb{R}^n$ 可以说明.

Theorem 1.5: 可测集的逼近

设 $E \in \mathcal{L}$, 则

- 1. $\forall \varepsilon > 0$, 则存在开集 $\mathcal{O} \supseteq E$ 且 $m(\mathcal{O} E) < \varepsilon$.
- 2. $\forall \varepsilon > 0$, 则存在开集 $F \subseteq E$ 且 $m(E F) < \varepsilon$.
- 3. 若 $m(E) < \infty$, 则存在一个紧集 $K \subseteq E$ 且 $m(E K) < \varepsilon$.
- 4. 若 $m(E) < \infty$, 则存在一个有限并闭方体 $F = \bigcup_{k=1}^{N} Q_j$ 使得 $m(E\Delta F) < \varepsilon$.

Proof: 前两条由定义是直接的.

第三条, 先将集合用闭集在内部逼近, 再将闭集分层, 找足够多层的闭集求并集就得到了想要 的紧集.

最后一条, 先把集合用方体覆盖住, 利用测度的有限性, 可以让方体覆盖收敛, 去除前面的有限 项就够了.

Remark. 可测集的测度有限不代表集合是有界集, 比如平面中的一条线.

Theorem 1.1 (测度的不变性). 测度具有以下性质:

1. 平移不变性, 旋转不变性, 反射不变性.

- 2. $m(\delta E) = \delta_1 \cdots \delta_n m(E)$.
- 3. 若 m(E) = 0, 则 m(L(E)) = 0, 其中 L 是线性变换.

Proof: 先将矩体覆盖诱导的外测度和之前定义的外测度证明是等价的. 在此基础上, 前两条用双射和基本技巧就可以了, 最后一条要对方体覆盖做适当放缩. □

Theorem 1.6: 可测集的等价叙述

设 $E \subset \mathbb{R}^n$, 则 E 是可测集等价于

- 1. E 和一个 F_{σ} 集相差一个零测集,
- 2. E 和一个 G_{δ} 集相差一个零测集.

Proof: 充分性显然. 必要性证明一个, 取一列开集 $\mathcal{O}_n \supseteq E$, 满足 $m(\mathcal{O}_n - E) < \frac{1}{n}$, 此时令 $G_\delta = \bigcap_{n=1}^\infty \mathcal{O}_n$ 即可.

Lemma 1.1: Borel-Cantelli 引理

设 $\{E_k\}_{k=1}^{\infty}$ 是一列 \mathbb{R}^n 中的可测子集, 并且有

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

那么集合 $E = \limsup_{k \to \infty} E_k$ 是零测集.

Proof: 有限项后集合测度任意小, 自然是零测的.

1.5 Non-measurable Set

给出一个用选择公理的经典方法. 首先对于区间 [0,1], 考虑商集 $\mathcal{N}=[0,1]/[0,1]_{\mathbb{Q}}=\{[\alpha]\}$, 利用区间 [-1,1] 之间的有理数做平移, 稍微研究性质发现有

$$[0,1] \subseteq \bigcup_{r \in [-1,1]_{\mathbb{Q}}} (\mathcal{N}+r) \subseteq [-1,2],$$

也就是

$$1 \le \sum_{r \in [-1,1]_{\mathbb{Q}}} m(\mathcal{N}) \le 3,$$

这是不可能的.

Remark 1.3:

这个结果说明了, 可数可加性和平移不变性, 再加上 $\mu([0,1]) = 1$, 这三个条件对于 $2^{\mathbb{R}^n}$ 是不相容的. 同时, 上面的技术可以推广, 正测度集里总能选出不可测集来 (当然是承认 AC 公理的基础下).

1.6 Measurable Functions

可测函数的定义是依赖于可测集的.

Definition 1.9: 可测函数

设可测集 $E \subseteq \mathbb{R}^n$, 广义实值函数 $f: E \to [-\infty, \infty]$, 若对任意 a, 有 $\{f < a\} := f^{-1}([-\infty, a))$ 可测, 则称函数 f 在 E 上可测.

当然由可测集的性质, 立刻有.

Proposition 1.3: 可测函数的等价描述

- 1. f 可测
- $2. \forall a, \{f > a\}$ 可测.
- 3. $\forall a, \{f < a\}$ 可测.
- $4. \forall a, \{f \leq a\}$ 可测.
- 5. $\forall a, \{f \geq a\}$ 可测.
- 6. 对每个开集 \mathcal{O} , $f^{-1}(\mathcal{O})$ 可测.
- 7. 对每个闭集 F, $f^{-1}(F)$ 可测.
- 8. 对每个 Borel 集 B, f⁻¹(B) 可测.

Proof: 证明由前置知识中的命题可以容易看出.

Remark. 要区分广义实值和实值,即 $[-\infty,\infty]$ 和 $\mathbb{R}=(-\infty,\infty)$, 之前定义可测函数时考虑的就是广义实值函数及其水平集.

连续性是一个比可测性更强的条件,结合连续函数的拓扑等价描述,有如下性质

Proposition 1.4: 连续函数可测

若函数 $f \in \mathbb{R}^n$ 上连续, 则 f 可测. 若 $f: E \to \mathbb{R}$ 可测, $g: \mathbb{R} \to \mathbb{R}$ 连续, 则 $g \circ f$ 可测.

Remark. 上述命题若改为 f 可测, Φ 连续, 那么 $f \circ \Phi$ 未必可测. 这个命题的证明比较重要, 甚至能得到 $\mathcal{B} \subsetneq \mathcal{L}$ 的重要结果.

Proposition 1.8. 存在可测函数 f 和连续函数 g 使得函数 $f \circ g$ 是不可测的, 且 $\mathcal{B} \subsetneq \mathcal{L}$.

Proof: 利用类 Cantor 集和 Cantor-Lebesgue 函数可以构造一个将正测度集映射到零测集的函数 $\Phi: \hat{\mathcal{C}} \to \mathcal{C}$. 并且用之前的技术, 可以在 $\hat{\mathcal{C}}$ 中找到一个不可测集 \mathcal{N} , 那么就有 $m(\Phi(\mathcal{N})) = 0$, 接着取可测函数 $f = \chi_{\Phi(\mathcal{N})}$ 即可.

不难证明 \mathbb{R} 上 Borel 集的原像都是可测的, 那么集合 $\Phi(\mathcal{N})$ 就是不属于 $\mathcal{B}_{\mathbb{R}}$ 的可测集. \square 可测函数类上有一些封闭运算, 列举如下

Proposition 1.5: 可测函数之间的运算

设函数 f,g 是可测函数, 那么在函数有定义的基础下, 有

- 1. $f^k, k \in \mathbb{Z}$ 是可测函数.
- $2. \lambda f$ 是可测函数.
- $3. f \pm g$ 是可测函数.
- 4. fg 是可测函数.
- $5. \frac{f}{g}$ 是可测函数.

Proof: 第一条要对 k 奇偶性分类, 然后开方即可. 第二条由定义即可. 第三条有一些技巧性, 需要等式

$$\{f+g>a\} = \bigcup_{r\in\mathbb{O}} (\{f>a-r\}\cap \{g>a\}).$$

第四条要等式

$$fg = \frac{1}{4} ((f+g)^2 + (f-g)^2).$$

第五条将除法不等式变成乘法即可.

Proposition 1.9 (特征函数和可测性). χ_E 可测等价于 E 可测.

Definition 1.7 (简单函数). 简单函数是定义在可测集上的特征函数的线性表示, 也就是如下形式的函数

$$f = \sum_{k=1}^{N} a_k \chi_{E_j},$$

Proposition 1.6: 简单函数的标准表示

简单函数是可测的, 且有唯一的标准表示如下

$$\varphi = \sum_{k=1}^{N} a_k \chi_{E_k},$$

其中满足, 当 $i \neq j$ 时, $a_i \neq a_j$ 和 $E_i \cap E_j = \emptyset$, 并且 $\bigcup\limits_{k=1}^N E_k = \mathbb{R}^n$.

Remark 1.4:

这里的简单函数定义并没有要求有限测度,在之后的积分理论中会让理论更加简洁.

Definition 1.10: 阶梯函数

矩体的示性函数的线性组合 (总认为是有限个) 就是阶梯函数.

Theorem 1.7: 可测函数类对极限封闭

设 $\{f_k\}$ 是一列可测函数, 那么以下函数都可测

$$\sup_{k} f_k$$
, $\inf_{k} f_k$, $\limsup_{k \to \infty} f_k$, $\liminf_{k \to \infty} f_k$.

特别的, $\lim_{k\to\infty} f_k$ 存在必然可测.

Remark. 以上的函数是逐点定义的.

Proof:
$$\{\sup_{k} f_{k} > a\} = \bigcup_{k=1}^{\infty} \{f_{k} > a\}.$$

$$\{\inf_{k} f_{k} > a\} = \bigcap_{k=1}^{\infty} \{f_{k} > a\}.$$

$$\{\lim\sup_{k \to \infty} f_{k} > a\} = \{\inf_{j} \sup_{k \ge j} f_{k} > a\} = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} \{f_{k} > a\}.$$

$$\{\liminf_{k \to \infty} f_{k} > a\} = \{\sup_{j} \inf_{k \ge j} f_{k} > a\} = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} \{f_{k} > a\}.$$

Remark. 上下极限可以用极限点的上下确界来等价定义, 但是会有一定的局限性, 上面的计算中出现的也是一种等价的定义方式.

Corollary 1.1. 若函数 f,g 可测, 则逐点定义的函数 $\max(f,g)$ 和 $\min(f,g)$ 都是可测的.

Definition 1.11: 正部和负部

函数的正部 $f^+ := \max(f(x), 0)$, 函数的负部 $f^- := \min(-f(x), 0)$.

Proposition 1.10. $f = f^+ - f^-, |f| = f^+ + f^-.$

Corollary 1.2. f 可测 $\Leftrightarrow f^+, f^-$ 可测 $\Rightarrow |f|$ 可测.

Remark. |f| 可测 $\Rightarrow f$ 可测, 考虑不可测集 \mathcal{N} , 和函数

$$f = \begin{cases} 1 & x \in \mathcal{N} \\ -1 & x \notin \mathcal{N}. \end{cases}$$

Definition 1.12: a.e.

设 $E \subseteq \mathbb{R}^n$ 可测, $\mathcal{P}(x)$ 是有关 x 的命题, 若

$$m(\{x \in E : \mathcal{P}(x)$$
不成立 $\}) = 0$,

则称 $\mathcal{P}(x)$ 在 E 上几乎处处 (a.e.) 成立.

Example 1.1: 可测函数列对几乎处处收敛封闭

设 $\{f_k\}$ 是一列可测函数, 且 $f_k \to f$, a.e., 那么 f 可测.

实分析的精髓之一是用好的函数逼近差的函数,并且让好的函数尽量多的保持原有函数的性质.

Theorem 1.8: 简单函数逼近非负可测函数

设函数 f 在 \mathbb{R}^n 上非负可测, 那么一定存在一列简单函数 $\{\varphi_k\}$, 满足以下条件:

- 1. $\varphi_k \geq 0$,
- 2. $\varphi_k \nearrow f$.

特别的, 若 f 有界, 则 $\varphi_k \Rightarrow f$.

Proof: 定义集合 $E_k^j = \{\frac{j}{2^k} \le f < \frac{j+1}{2^k}\}$ 和 $F_k = \{f \ge 2^k\}$, 这是可测的. 然后定义函数

$$\varphi_k = \sum_{j=1}^{2^{2k-1}} \frac{j}{2^k} \chi_{E_j} + 2^k \chi_{F_k}.$$

注意到集合列 $\{E_j\} \cup F_k$ 是对全空间的不断加细,因此容易证明函数是递增的.另一方面,在有限步后,若是 \mathbb{R}^n 中的点高度有限,就会落在集合列 $\{E_j\}$ 中,若是 x_0 处取值为 $+\infty$,那么 $\varphi_k(x_0) = 2^k \to \infty$.因此 $\{\varphi_k\}$ 总逐点收敛到 f.并且,若函数有界,有限步后所有的点落在集合列 $\{E_j\}$ 中,因此收敛速度有公共的上界,即一致收敛.

Theorem 1.9: 简单函数逼近可测函数

设函数 f 在 \mathbb{R}^n 上可测, 那么一定存在一列简单函数 $\{\varphi_k\}$ 满足以下条件:

- 1. $|\varphi_k| \leq |\varphi_{k+1}|$,
- 2. $\varphi_k \to f$.

Proof:对正负部分别使用上一定理即可.

Definition 1.8 (Support Set). 函数 f 的支集 $supp(f) := \overline{\{f \neq 0\}}$, 若 supp(f) 是紧的,则称 f 是紧支的.

Corollary 1.3. 设 f 可测, 那么有紧支的绝对值递增函数列 $\{\varphi_k\}$ 逐点收敛到 f.

Proof: 把之前的函数列同时用球做截断就行.

Theorem 1.10: 阶梯函数 a.e. 逼近可测函数

设 $f \in \mathbb{R}^n$ 上的可测函数, 则存在一列阶梯函数 $\{\psi_k\}$ 使得 $\psi_k \to f, a.e.$

证明依赖如下引理

Lemma. 设 $\{f_k\}$ 和 $\{g_k\}$ 是可测函数列, 且有

$$\begin{cases} f_k \to f, a.e. \\ \sum_{k=1}^{\infty} m(\{f_k \neq g_k\}) < \infty, \end{cases}$$

则有 $g_k \rightarrow f, a.e.$.

Proof of Lemma.

$$\{|g_k - f| \ge \varepsilon\} \subseteq \{|g_k - f_k| \ge \frac{\varepsilon}{2}\} \cup \{|f_k - f| \ge \frac{\varepsilon}{2}\}$$
$$\subseteq \{|f_k - f| \ge \frac{\varepsilon}{2}\} \cup \{g_k \ne f_k\}$$

由于

$$\{g_k \to f\} = \bigcap_{l=1}^{\infty} \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} \{|g_k - f| < \frac{1}{l}\},$$

由 De Morgan 律有

$$\{g_k \nrightarrow f\} = \bigcup_{l=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} \{|g_k - f| \ge \frac{1}{l}\}.$$

因此有

$$\{g_k \nrightarrow f\} \subseteq \bigcup_{l=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} \left(\{g_k \neq f_k\} \cup \{|f_k - f| \ge \frac{1}{2l}\} \right) = \limsup_{k \to \infty} \{g_k \neq f_k\} \cup \{f_k \nrightarrow f\}.$$

结合条件和 Borel Cantelli 引理得证.

Proof: 策略是从特殊到一般的做法.

1. 当 $f = \chi_E$ 且 $m(E) < \infty$. 利用之前的有限方体逼近,对任意 $\varepsilon > 0$,有一组方体 $\{Q_j\}_{j=1}^N$,使得 $m(E\Delta\left(\bigcup_{j=1}^NQ_j\right)) < \frac{\varepsilon}{2}$. 将方体的边延长,并以此剖分,得到有限个内部不

交的矩体 $\{R_j\}_{k=1}^M$,为了方便处理,将每个矩体都以原有中心向内缩小得到 $\{\widetilde{R_j}\}_{k=1}^M$. 使得 $m(E\Delta\left(\bigcup_{i=1}^M \widetilde{R_k}\right))<\varepsilon$. 此时令

$$\psi = \sum_{k=1}^{M} \chi_{\widetilde{R_k}}.$$

那么当

$$x \in (E\Delta\left(\bigcup_{k=1}^{M} \widetilde{R_k}\right))^c = (E^c \cap \left(\bigcup_{k=1}^{M} \widetilde{R_k}\right)^c) \cup \left(\left(\bigcup_{k=1}^{M} \widetilde{R_k}\right) \cap E\right),$$

有 $\psi = \chi_E$.

- 2. 当 f 是任意紧支简单函数. 和上一步没有本质区别.
- 3. 当 f 是一般的可测函数. 由之前的推论, 可以找一列紧支的简单函数列 $\{\varphi_k\}$ 使得 $\varphi \to f$. 由上一步, 可以找另一列阶梯函数 $\{\psi_k\}$, 且使得 $m(\{\psi_k \neq \varphi_k\}) < \frac{1}{2^k}$. 由引理, 就有 $\{\psi_k\}$ 几乎处处收敛到 f.

1.7 Littlewood's Three Principles

- 1. 所有集合都差不多是有限个区间的并;
- 2. 所有函数都是差不多连续的;
- 3. 所有收敛列都是差不多一致收敛的.

Theorem 1.11: (Egorov) 近乎一致收敛

设可测集 E 满足 $m(E) < \infty$, 函数 f, f_1, \cdots 是定义在 E 上的可测函数且几乎处处有限, 若 $f_k \to f, a.e.$, 那么对任意 $\varepsilon > 0$, 有 $A_{\varepsilon} \subseteq E$, 使得 $m(E - A_{\varepsilon}) < \varepsilon$, 且在 A_{ε} 上有 $f_k \Rightarrow f$.

Proof: 不失一般性, 可以设函数列 $\{f_k\}$ 逐点收敛到 f, 那么其集合表示为

$$\bigcup_{l=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} \{ |f_k - f| \ge \frac{1}{l} \} = \emptyset.$$

由连续性, 从而对每个 l 可以取出一个 k_l (可以取为递增列) 使得

$$m(\bigcup_{k=k_l}^{\infty} \{|f_k - f| \ge \frac{1}{l}\}) < \frac{\varepsilon}{2^l},$$

然后由次可加性有

$$m(\bigcup_{l=1}^{\infty}\bigcup_{k=k_{l}}^{\infty}\{|f_{k}-f|\geq\frac{1}{l}\})<\varepsilon.$$

现在令

$$A_{\varepsilon} = \bigcap_{l=1}^{\infty} \bigcap_{k=k_l}^{\infty} \{ |f_k - f| \le \frac{1}{l} \}$$

就完成了证明.

Remark. 1. 在 Folland 的书上没有几乎处处有限这一条件, 在证明中好像也没用到这一条件.

2. 测度有限是不能去掉的条件, 可以考虑正半实轴的特征函数和函数列.

Theorem 1.12: (Lusin) 限制上连续

设 E 可测, 函数 f 在 E 上连续且几乎处处有限, 那么任意 $\varepsilon > 0$, 存在闭集 $F_{\varepsilon} \subseteq E$, 使 得 $m(E - F_{\varepsilon}) < \varepsilon$, 使得 $f|_{F_{\varepsilon}}$ 连续.

Proof: 首先对有限测度集上的简单函数, 这个很容易. 再对有限测度集上的一般可测函数, 先用简单函数逐点逼近, 再用 Egorov 定理将 E 改造成子集 A_{ε} , 再改造 A_{ε} 为闭集 F_{k} 使得函数 φ_{k} 在 F_{k} 的限制下连续, 最后求并集即可. 一般的可测集只要用圆环剖分加上求并就行, 注意 闭集的不交并还是并集.

Remark. 里面的连续是子拓扑的连续, 结合扩张定理会很有用.

2 Lebesgue Integration Theory

2.1 The Construction of New Integration Theory

一下的 \int 符号代表在 \mathbb{R}^n 上的积分. 可积是指积分值有限. 首先对非负简单函数定义积分. 设函数如下

$$\varphi = \sum_{k=1}^{N} a_k \chi_{E_k},$$

其中 $a_k \ge 0$, E_k , $k = 1, \cdots$ 是无交的, 那么定义 Lebesgue 积分为

$$\int \varphi dm = \sum_{k=1}^{N} a_k m(E_k).$$

这个积分是良定的, 因为若写

$$\varphi = \sum_{j=1}^{M} b_j \chi_{F_j},$$

那么考虑计算 $m(E_k \cap f_i)$ 即可.

通过定义以及良定性中的技术可以证明其具有线性性, 可加性 (积分区域) 和单调性. 然后对非负可测函数定义积分, 设函数为 f, 那么其 Lebesgue 积分为

$$\int f dm = \sup \{ \int \varphi : \varphi 是简单函数, 0 \le \varphi \le f \}.$$

这样定义的积分有重要的性质,单调性是由定义显然的.

Proposition 2.1: 非负函数积分为 0

若 $f \ge 0$ 且可测, 那么 $\int_E f dm = 0$ 当且仅当 $E \perp f = 0, a.e.$.

Corollary 2.1. 修改可测函数零测集上的函数值, 其积分值不变.

Proposition 2.2: 可积函数几乎处处有限

若 f 是 E 上的可积函数,则函数 f 在 E 上几乎处处有限.

证明都是一些测度的标准计算, 略去.

Lebesgue 积分的重要问题之一是积分与其他运算的一些交换问题.

Theorem 2.1: 单调收敛定理 (MCT)

设 E 上可测函数列 $f_k \ge 0$, $k = 1, \dots, 且 f_k \nearrow f$, a.e., 则 $\lim_{k \to \infty} \int_E f_k dm = \int_E f dm$.

Proof: 证明中有一个有意思的技巧. 几乎处处的条件没有影响, 直接忽略. 首先有显然的不等式 $\lim_{k\to\infty}\int_E f_k dm \leq \int_E f dm$. 利用定义, 考虑一个任给的简单非负函数 $\varphi = \sum_{j=1}^N a_j \chi_{F_j}$ 满足 $\varphi \leq f$. 然后取 $\alpha \in (0,1)$, 并令 $E_k = \{f_k \geq \alpha \varphi\}$. 注意到 $E_k \nearrow E$. 有

$$\int_{E} f_k dm > \int_{E_k} f_k dm > \alpha \int_{E_k} \varphi dm = \alpha \left(\sum_{j=1}^{M} a_j m(F_j \cap E_k) \right).$$

取极限有

$$\lim_{k\to\infty}\int_E fdm \geq \alpha \int_E \varphi dm.$$

最后取 $\alpha \to 1^-$ 即可.

Theorem 2.2: Fatou 引理

设 f_k 是 E 上的非负可测函数列, 那么

$$\int_{E} \liminf_{k} f_k dm \le \liminf_{k} \int_{E} f_k dm.$$

Proof: 注意到对给定的 k, 有

$$\inf_{i \le k} f_j \ge f_i \quad \forall i \le k.$$

左右同时积分有

$$\int_{E} \inf_{j \ge k} f_j dm \le \int_{E} f_i dm \quad \forall i \le k,$$

也就是

$$\int_{E} \inf_{j \ge k} f_j dm \le \inf_{i \ge k} \int_{E} f_i dm.$$

两端取极限再用 MCT 就完成了证明.

Remark. 不取等的反例可以考虑函数列 $f_n = n\chi_{(0,1)}$.

Remark. 事实上 Fatou 引理的证明并不依赖 MCT, 因此逻辑上是可以用 Fatou 引理证明 MCT 的. 证明仍然是两边做不等式, 其中 Fatou 引理可以用来解决不平凡的一边.

利用 MCT, 就可以证明积分的正线性和下面的逐项积分性质.

Proposition 2.1. 若 $f_k \ge 0$ 是 E 上的可测函数列, 且 $\sum_{k=1}^{\infty} f_k$ 几乎处处有限, 那么

$$\int_{E} \left(\sum_{k=1}^{\infty} f_k \right) dm = \sum_{k=1}^{\infty} \int_{E} f_k dm.$$

这个性质可以用来证明之前的 Borel Cantelli 引理.

最后给出一般的可测函数的 Lebesgue 积分.

Definition 2.1: 可测函数的 Lebesgue 积分

设 E 是 \mathbb{R}^n 的可测子集, 且函数 f 在 E 上可测, 若 $\int_E f^+dm$ 和 $\int_E f^-dm$ 至少一个是有限的, 那么函数 f 的 Lebesgue 积分为

$$\int_{E} f dm := \int_{E} f^{+} dm - \int_{E} f^{-} dm,$$

且若 $\int_E f^+ dm$ 和 $\int_E f^- dm$ 都是有限的, 这称函数 f 在 E 上可积, 记 $f \in L^1$.

这个定义自然与蕴含了下面的结果.

Proposition 2.3: 可积和绝对可积

函数 f 可积等价于函数 |f| 可积.

那么以后验证函数是否 Lebesgue 可积往往可以考虑其绝对值是否可积, 也就是非负可测 函数.

在之前的铺垫下, 不难验证 Lebesgue 积分的线性性, 也就是 L^1 构成线性空间 (先证可积, 再证线性), 以及函数可积则函数几乎处处有限. 使用 MCT 则得到下面的有用结果.

Proposition 2.2. 设 $f \in L^1$, 可测集 E_1, \cdots 不交, 那么

$$\int_{\bigcup_{k=1}^{\infty} E_k} f dm = \sum_{k=1}^{\infty} \int_{E_k} f dm,$$

最后,还有类似的单调性和三角不等式 $|\int_E fdm| \leq \int_E |f|dm$,证明都与之前类似或并不 困难.

The Property of Lebesgue Integration

积分值有限似乎暗喻着, 积分值是由一个较大的积分区域确定的, 事实上这个感觉是有道 理的. 可以联想有限可测集可以被紧集任意逼近这一结果.

Theorem 2.1. 若 $f \in L^1$, 则任取 $\varepsilon > 0$, 存在球 $B \subseteq \mathbb{R}^n$, $m(B) < \infty$, 使得 $\int_{\mathbb{R}^n - B} |f| dm < \varepsilon$.

Proof: 造函数列 $f_k = |f|_{\chi_{B_k}}$, 则 $f_k \nearrow |f|$, 然后用 MCT 和 $\varepsilon - \delta$ 语言即可.

Theorem 2.3: Lebesgue 积分的绝对连续性

设函数 $f \in L^1$, 那么任取 $\varepsilon > 0$, 存在 $\delta > 0$, 使得下式

$$\int_{E} |f| dm < \varepsilon,$$

对任意 $m(E) < \delta$ 成立.

Proof: 证明是标准的. 考虑截断 $E_k = \{f \leq k\}$. 令 $f_k = |f|\chi_{E_k}$, 那么有 $f_k \nearrow |f|$. 利用 MCT 就可以找 N 使得

$$0 < \int f dm - \int f_N dm \varepsilon,$$

那么取 $\delta = \frac{\varepsilon}{2}$, 就有任意 $m(E) < \delta$, 都有

$$\int_{E} |f| dm = \int_{E} (|f| - f_{N}) dm + \int_{E} f_{N} dm < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

在幂级数的一致收敛中,有 Weierstrass 收敛定理,其大意就是找一个收敛级数从而控制 住幂级数,在这里用类似的想法,将得到一个强大的收敛定理.

Theorem 2.4: 控制收敛定理 (DCT)

设函数列 $f_k \to f$, a.e., 且存在控制函数 $g \in L^1(E)$, 使得在 E 上有 $|f_k| \leq g$, a.e., 则有

$$\lim_{k \to \infty} \int_{E} f_k dm = \int_{E} f dm.$$

Proof: 由条件 $\begin{cases} f_k \to f, a.e. \\ |f_k| \le g \end{cases}$ 可知 $|f| \le g, a.e.$. 令 $g_n := |f_n - f|$, 那么 $g_n \to 0, a.e.$, 并且 有 $0 \le g_n \le 2g, a.e.$. 利用 Fatou 引理有,

$$\int \liminf_{n \to \infty} (2g - g_n) \le \liminf_{n \to \infty} \int (2g - g_n).$$

也即

$$\int 2g \le \int 2g - \limsup_{n \to \infty} \int g_n.$$

这就是说

$$\lim_{n \to \infty} \int |f - f_n| = 0.$$

下面给出一个使用 DCT 的例子.

Theorem 2.5: 积分号下求导

设 $E \subseteq \mathbb{R}^n$ 是可测集, 定义函数 $f: E \times (a,b) \to \mathbb{R}$, 有以下条件成立:

- $(1) \forall y \in (a,b), x \mapsto f(x,y)$ 可积.
- $(2) \ \forall x \in E, y \mapsto f(x,y)$ 可微.

(3)
$$\exists g \in L^1, s.t. \left| \frac{\partial f}{\partial y}(x, y) \right| \le g(x).$$

那么有
$$\frac{\partial}{\partial y} \int_{E} f(x,y) dx = \int_{E} \frac{\partial f}{\partial y}(x,y) dx.$$

Proof: 由可微性, 可以取数列 $\{t_k\}, t_k \to 0, \exists k \to \infty$. 此时定义

$$f_k = \frac{f(x, y + t_k) - f(x, y)}{t_k} \to \frac{\partial f}{\partial y}(x, y).$$

直接使用 DCT 计算左端为

$$\frac{\partial}{\partial y} \int_{E} f(x,y) dx = \lim_{k \to \infty} \int_{E} f_{k} = \int_{E} \frac{\partial f}{\partial y}(x,y) dx.$$

最后, 我们说明 Lebesgue 积分是 Riemann 积分的推广.

Theorem 2.2. 若函数 f 在 [a,b] 上 Riemann 可积, 那么函数在 [a,b] 上 Lebesgue 可积, 记为

$$\int_{a}^{b} f dx = \int_{[a,b]} f dm.$$

Proof: 利用 Darboux 上下和定义出阶梯函数列 $\{\varphi_n\}$ 和 $\{\psi_n\}$. 那么若 f 在 [a,b] 上 Riemann 可积,则有

$$\int_a^b \varphi_n dx \searrow \overline{\int_a^b} f dx, \quad \int_a^b \psi_n dx \nearrow \int_a^b f dx.$$

由于 f 有界,设 $|f| \le M$,那么由定义,有 $|\varphi_n|, |\psi_n| \le M$. 定义函数 $g = \lim_{n \to \infty} \varphi_n$ 和 $h = \lim_{n \to \infty} \psi_n$.此时由 DCT,可知 $g, h \in L^1$.那么计算有

$$\int_{[a,b]} g dm = \lim_{n \to \infty} \int_{[a,b]} \varphi_n dm = \overline{\int_a^b} f dx.$$

$$\int_{[a,b]} h dm = \lim_{n \to \infty} \int_{[a,b]} \psi_n dm = \int_{\underline{a}}^{\underline{b}} f dx.$$

也就是说由 f 的 Riemann 可积得到了 g=h,a.e. 的结果, 而事实上 $h \leq f \leq g$, 因此 f=g,a.e., 即 f 是 Lebesgue 可积的.

2.3 L^p Space

本小节将讨论函数空间的向量空间结构, 和其上的范数, 度量以及对应的收敛问题.

Definition 2.2: L^p 空间

设 $E \subseteq \mathbb{R}^n$ 是一个可测集, f 是 E 上的可测函数, 那么对 0 , 定义范数如下

$$||f||_p := \left(\int_E |f|^p dm\right)^{\frac{1}{p}},$$

$$L^p := \{ f : ||f||_p < +\infty \}.$$

特别的, 对于 $p=+\infty$ 的情况. 称 f 本性有界, 若在 E 上有 $|f|\leq M$ 成立. 其中称 ess $\sup |f|:=\inf\{M>0:|f|\leq M\}$ 为函数 f 的本性上确界, 此时 $||f||_{\infty}:=$ ess $\sup_{x\in E}|f|$.

Remark. 由于 Lebesgue 积分无法区分几乎处处相等的函数, 因此商去这个等价类, 以下也默认这一操作且不做区分.

要使得其为向量空间, 只要验证函数的和还是 L^p 的即可.

Proposition 2.3. 设 $1 \le p \le +\infty$, 若函数 $f, g \in L^p$, 那么 $f + g \in L^p$.

Proof: 当 $p = +\infty$, 结论是显然的.

当 $1 \le p < +\infty$, 计算如下

$$||f+g||_p^p = \int_E |f+g|^p dm \leq \int_E 2^p (\max |f|, |g|)^p dm \leq 2^p \left(\int_E |f|^p dm + \int_E |g|^p dm \right).$$

事实上我们还没有证明定义的"范数"是一个范数,这一结果的验证需要一些步骤.

Theorem 2.6: Minkovski 不等式

若 $1 \le p \le +\infty$, $f, g \in L^p$, 则有

$$||f+g||_p \le ||f||_p + ||g||_p.$$

Proof: 首先证明 Young 不等式. 若 $\lambda \in (0,1)$, $a,b \geq 0$, 则有

$$a^{\lambda}b^{1-\lambda} < \lambda a + (1-\lambda)b.$$

齐次化后求导即可.

其次证明积分形式的 Hölder 不等式. 若 1

$$||fg||_1 \le ||f||_p ||g||_{p'}.$$

略去平凡情况, 计算如下

$$\left| \left| \frac{f}{||f||_{p}} \frac{g}{||g||_{p'}} \right| \right|_{1} = \int_{E} \left| \frac{f}{||f||_{p}} \right|^{p\frac{1}{p}} \left| \frac{g}{||g||_{p'}} \right|^{p'\frac{1}{p'}} dm$$

$$\leq \frac{1}{p} \int_{E} \left| \frac{f}{||f||_{p}} \right|^{p} dm + \frac{1}{p'} \int_{E} \left| \frac{g}{||g||_{p'}} \right|^{p'} dm = 1$$

最后证明 Minkovski 不等式. $p = 1, +\infty$ 时结论平凡. 当 1 时, 计算如下

$$||f+g||_p^p = \int_E |f+g|^p dm = \int_E |f+g||f+g|^{p-1} dm$$

$$\leq \int_E |f||f+g|^{p-1} dm + \int_E |g||f+g|^{p-1} dm$$

$$\leq (||f||_p + ||g||_p) \left(\int_E |f+g|^{(p-1)p'} dm \right)^{\frac{1}{p'}}$$

$$= (||f||_p + ||g||_p)||f+g||^{p-1}.$$

Remark. 事实上这里容易说明当 0 时不是一个范数.

至此, L^p 空间成为了赋范空间, 因此有对应的范数拓扑 (其实就是度量拓扑). 基于范数定义函数空间上的 Cauchy 列, 即 $d(f_k, f_l) \to 0$, 当 $k, l \to +\infty$. 我们称任意 Cauchy 列都有极限的空间为完备的. 有下面的结果.

Theorem 2.7: Risez-Fisher

当 $1 , <math>(L^p(E), ||\cdot||)$ 是完备赋范空间.

Remark. 证明前需要说明的是, L^p 收敛不代表点态的收敛, 甚至可以任意一点都不收敛但 L^p 收敛. 我们要找的是 L^p 拓扑下的极限函数, 并证明其也是 L^p 的.

Proof: 仿照 \mathbb{R} 上的处理, 先找 $\{f_n\}$ 的收敛子列 $\{f_{n_k}\}$, 满足

$$||f_{n_{k+1}} - f_{n_k}||_p \le \frac{1}{2^k}, \quad n_{k+1} > n_k.$$

先定义

$$g_N = |f_{n_1}| + \sum_{k=1}^{N} |f_{n_{k+1}} - f_{n_k}|,$$

$$g = |f_{n_1}| + \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}|.$$

那么有 $g_N \nearrow g$, 也有 $g_N^p \nearrow g^p$. 并且有

$$||g_N||_p \le ||f_{n_1}||_p + \sum_{k=1}^N ||f_{n_{k+1}} - f_{n_k}||_p \le ||f_{n_1}||_p + \sum_{k=1}^\infty ||f_{n_{k+1}} - f_{n_k}||_p \le M.$$

利用 Fatou 引理, 计算有

$$\int_{E} g^{p} dm \le \liminf_{k \to \infty} \int_{E} g_{n_{k}}^{p} dm \le M^{p},$$

因此有 $g \in L^p$, 也有 g 几乎处处有限, 那么可以逐点定义

$$f = f_{n_1} + \sum_{k=1}^{\infty} (f_{n_{k+1}} - f_{n_k}),$$

这里的等号是几乎处处成立的. 那么再有 Fatou 引理, 有

$$\int_E f^p dm \leq \liminf_{k \to \infty} \int_E f^p_{n_k} dm.$$

因此 $f \in L^p$,最后由 $||f - f_n||_p \le ||f - f_{n_l}||_p + ||f_{n_l} - f_n||_p$ 完成证明. 当然还要证明 $p = +\infty$ 的情况.

Theorem 2.8:

 L^{∞} 是完备的.

Proof: 首先处理零测集. 记集合 $A_k = \{|f_k| > ||f||_{\infty}\}$, 和 $B_{k,j} = \{|f_k - f_j| > ||f_k - f_j||_{\infty}\}$. 那么由定义, 这两种集合都是零测集. 记 $F = \left(\bigcup_{k=1}^{\infty} A_k\right) \cup \left(\bigcup_{k,j=1}^{\infty} B_{k,j}\right)$, 那么 F 也是零测集. 现在在集合 $E \setminus F$ 上, 有

$$|f_k(x) - f_j(x)| \le ||f_k - f_j||_{\infty},$$

因此可以逐点定义极限函数 f, 具体为

$$f = \begin{cases} \lim_{n \to \infty} f(x) & x \in E \setminus F, \\ 0 & x \notin E \setminus F. \end{cases}$$

函数 f 是可测的, 并且不难发现其本性有界, 最后只要在 $E \setminus F$ 上计算如下

$$|f(x) - f_k(x)| = \lim_{i \to \infty} |f_j(x) - f_k(x)| \le ||f_j - f_k||_{\infty}.$$

之前的收敛模式总结为如下概念.

Definition 2.3: 依范数收敛

对于函数列 $\{f_k\} \subseteq L^p$, 其中 $1 \le p \le +\infty$, 若有 $f \in L^p(E)$, 满足 $||f_k - f||_p \to 0$, 当 $k \to \infty$, 则称函数列依 L^p 范数收敛于 f, 记作

$$f_k \xrightarrow{L^p} f$$
.

为了应用, 我们发展更弱意义的收敛.

Definition 2.4: 依测度收敛

若可测函数列 $\{f_k\}$ 对任给的 $\varepsilon > 0$, 若有 $m(\{|f_k - f| \ge \varepsilon\}) \to 0$, 当 $k \to \infty$, 则称 $\{f_k\}$ 依测度收敛于 f, 记作

$$f_k \xrightarrow{m} f$$
.

这两个收敛意义是相关的, 接下来串联其一些概念的关键是上下限集和 Borel-Cantelli 引理.

Proposition 2.4: 依 L^p 范数收敛 \Rightarrow 依测度收敛

$$f_k \xrightarrow{L^p} f \Rightarrow f_k \xrightarrow{m} f.$$

Proof: 对任给的 $\varepsilon > 0$, 计算如下

$$\left(\int_{E} |f_{k} - f|^{p} dm\right)^{\frac{1}{p}} \ge \left(\int_{|f_{k} - f| \ge \varepsilon} |f_{k} - f|^{p} dm\right)^{\frac{1}{p}} \ge \varepsilon m(|f_{k} - f| \ge \varepsilon).$$

即

$$m(|f_k - f| \ge \varepsilon) \le \frac{1}{\varepsilon} ||f_k - f||_p \to 0.$$

实分析中常考虑几乎处处收敛,那么几乎处处收敛和依测度收敛是什么关系呢?

Example 2.1: 两个反例

- 1. $f_n = \chi_{\lceil \frac{n-2^m}{2m} \rceil, \frac{n+1-2^m}{2m} \rceil}$, $\sharp \vdash 2^m \le n < 2^{m+1}$.
- 2. $f_n = \frac{1}{n} \chi_{[-n,n]}$.

这两个反例给出两种收敛方式之间的关系: 一个是 L^p 但不 a.e., 一个依测度收敛但不 L^p , 但是我们仍有将其联系在一起的办法.

Theorem 2.9: Lebesgue 定理

若 $m(E) < +\infty$, 且 f, f_1, \cdots 可测并在 E 上几乎处处有限, 则有

$$f_k \xrightarrow{a.e.} f \Rightarrow f \xrightarrow{m} f.$$

Proof: 从结论出发, 要对任给的 $\varepsilon > 0$, 证明 $m(\{|f_k - f| \ge \varepsilon\}) \to 0$, 那么考虑几乎处处收敛的集合表述, 即

$$m\left(\bigcup_{l=1}^{\infty}\bigcap_{j=1}^{\infty}\bigcup_{k=j}^{\infty}\{|f_k-f|\geq\frac{1}{l}\}\right)=0.$$

也就是对任给的 $l \in \mathbb{N}_+$, 有

$$m\left(\bigcap_{j=1}^{\infty}\bigcup_{k=j}^{\infty}\{|f_k-f|\geq \frac{1}{l}\}\right)=0.$$

此时定义 $E_j = \bigcup_{k=j}^{\infty} \{|f_k - f| \ge \frac{1}{l}\}$, 注意测度的连续性和有限性, 看出函数列依测度收敛.

Theorem 2.10: Risez 定理

若函数列 $\{f_k\}$ 依测度收敛于 f, 那么有子列 $\{f_{n_k}\}$ 几乎处处收敛于 f.

Proof: 由依测度收敛的定义, $m(\{|f_k - f| \ge \varepsilon\}) \to 0$, 因此可以取出递增的指标 $\{n_k\}$ 使得有

$$m(\{|f_{n_k} - f| \ge \frac{1}{2^k}\}) \le \frac{1}{2^k}.$$

利用 Borel-Cantelli 引理有 $\limsup_{k\to\infty} \{|f_{n_k} - f| \ge \frac{1}{2^k}\}$ 为零测集.

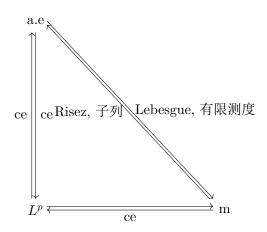
那么记
$$E_j = \bigcup_{k=j}^{\infty} \{|f_{n_k} - f| \ge \frac{1}{2^k}\},$$
 并考虑 $E \setminus E_j$, 在这个集合上有

$$|f_{n_k} - f| < \frac{1}{2^j}.$$

那么集合

$$\bigcup_{j=1}^{\infty} (E \setminus E_j) = \bigcup_{j=1}^{\infty} (E \cap E_j^c) = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} \{|f_{n_k} - f| < \frac{1}{2^k}\} = E \setminus \left(\limsup_{k=1} \{|f_{n_k} - f| \ge \frac{1}{2^k}\}\right).$$

我们将各种收敛意义的关系总结如下表, 值得注意的是, L^p 收敛和几乎处处收敛是没有关系的, 反例在之前已经给出了.



此外, L^p 和 L^q 空间 $(1 \le p < q < \infty)$ 之间的关系不是想当然的, 尽管我们曾有强等价关系.

若 $X = \mathbb{R}^n$, L^p 和 L^q 空间是互不包含的, 例子可以通过幂函数来构造.

若 $m(X) < \infty$, 那么有 $L^p \subseteq L^q$, 更具体的, 我们有如下不等式:

$$\frac{1}{m^{\frac{1}{q}}(X)}||f||_q \le \frac{1}{m^{\frac{1}{p}}(X)}||f||_p.$$

证明用到如下的 Hölder 不等式:

$$||fg||_1 \le ||f||_p ||g||_q, \quad \frac{1}{p} + \frac{1}{q} = 1,$$

没有本质的困难.

在本节的最后, 我们仍然强调, L^p 函数有很多性质很坏的函数, 但是, 这些家伙都能被我们熟悉的一些比较好的函数逼近, 具体地说, 能被简单函数, 阶梯函数, 乃至连续紧支函数依范数逼近, 其中的工具是单调收敛定理和点集拓扑中的 Urysohn 引理, 证明是老生常谈, 略去.

Theorem 2.11: L^p 逼近

简单函数, 阶梯函数, 连续紧支函数 $(C_c(\mathbb{R}^n))$ 在 L^p 空间稠密.

2.4 Fubini Theorem

Fubini 定理是一个条件简单, 但是结论异常强大的定理, 以下仅叙述定理及其大致用法.

Definition 2.5: 切片 (slice)

我们称集合 $E^y = \{(x,y) : x \in E\}$ 为集合关于 y 的切片, 称函数 $f^y(x) = f(x,y)$ 为函数 f(x,y) 关于 y 的切片, 对 x 类似定义这一概念.

Theorem 2.12: Tonelli Theorem

记 L^+ 为非负可测函数全体, 那么有:

(T1) 几乎所有 $y \in \mathbb{R}^{n_2}, f^y \in L^+(\mathbb{R}^{n_1});$

$$(T2) y \mapsto \int_{\mathbb{R}^{n_2}} f^y dx \in L^+(\mathbb{R}^{n_2});$$

$$(T3) \int_{\mathbb{R}^{n_1+n_2}} f dm = \int_{\mathbb{R}^{n_1}} \left(\int_{\mathbb{R}^{n_2}} f^y dx \right) dy.$$

类似的结论对 x 也成立.

用这个定理可以证明 Fubini 定理, 并且, 这两个定理也可以一起使用, 比如先处理绝对值版本的交换次序, 再回到没有绝对值的情况, 毕竟对于 Lebesgue 积分而言, 可积和绝对可积是一回事. 以下再叙述 Fubini 定理, 条件是非常弱的.

Theorem 2.13: Fubini Theorem

设 $f \in L^1(\mathbb{R}^{n_1+n_2})$, 那么有:

(F1) 几乎所有 $y \in \mathbb{R}^{n_2}, f^y \in L^1(\mathbb{R}^{n_1});$

$$(F2) y \mapsto \int_{\mathbb{R}^{n_2}} f^y dx \in L^1(\mathbb{R}^{n_2});$$

$$(F3) \int_{\mathbb{R}^{n_1+n_2}} f dm = \int_{\mathbb{R}^{n_1}} \left(\int_{\mathbb{R}^{n_2}} f^y dx \right) dy.$$

类似的结论对 x 也成立.

2.5 Applications of Fubini Theorem

似乎是众所周知的事情, Fubini 定理的应用比其证明要重要得多. 接下来将展示一些 Fubini 定理的应用, 其中的一些结果并不是完全显然的.

首先是将 Tonelli 定理对应到测度,或者说示性函数上.

Corollary 2.1: 示性函数的 Tonelli 定理

设 $E \in \mathbb{R}^{n_1+n_2}$ 是可测集, 那么有:

- (1) 几乎所有 $y \in \mathbb{R}^{n_2}, E^y \in \mathcal{L}_{\mathbb{R}^{n_1}};$
- (2) $y \mapsto m(E^y)$ 是可测函数;

$$(3) m(E) = \int_{\mathbb{R}^{n_2}} m(E^y) dy.$$

类似的结论对 x 也成立.

这个结论表明, 集合可测, 其切片也几乎是可测的, 但是, 切片几乎可测无法说明集合可测, 一个例子是 $[0,1] \times \mathcal{N}$.

切片这一操作启发我们考虑乘积集合,按照直觉,可测集的乘积应该也是可测的,同时,在测度上应该就是其测度的乘积.另一个值得注意的是,依照推论,切片也应该能在某些时候变得更具体且性质更好,把这些命题都列举如下.

Proposition 2.5: 乘积可测 [?] 分量可测

若 $E_1 \times E_2 \in \mathcal{L}_{R^{n_1+n_2}}$, 并且 $m_*(E_2) > 0$, 那么 $E_1 \in \mathcal{L}_{\mathbb{R}^{n_1}}$.

Proof: 由于 $E_1 \in \mathcal{L}_{\mathbb{R}^{n_1}} \Leftrightarrow \chi_{E_1}$ 可测,而 $\chi_{E_1 \times E_2}^y(x) = \chi_{E_1}(x)\chi_{E_2}(y)$ 对于几乎每个 $y \in E_2$ 是可测的. 那么只要找一个确定的 $y \in E_2$ 即可,这里用到了条件中的外测度非零. 设 $F = \{y \in \mathbb{R}^{n_2} : (E_1 \times E_2)^y \in \mathcal{L}_{\mathbb{R}^{n_1}}\}$,那么由推论, $m(F^c) = 0$,因此

$$0 < m_*(E_2) \le m_*(E_2 \cap F) + m_*(E_2 \cap F^c) \le m_*(E_2 \cap F)$$

也就是说 $E_2 \cap F \neq \emptyset$.

下个结果是完全符合直觉的.

Proposition 2.6: 可测集的乘积

设 $E_1 \in \mathcal{L}_{\mathbb{R}^{n_1}}, E_2 \in \mathcal{L}_{\mathbb{R}^{n_2}},$ 那么 $E_1 \times E_2 \in \mathcal{L}_{\mathbb{R}^{n_1+n_2}}$ 且 $m(E_1 \times E_2) = m(E_1)m(E_2)$.

Proof: 证明依赖一个引理.

Lemma. $m_*(E_1 \times E_2) < m_*(E_1)m_*(E_2)$.

Proof: 只证明相对本质的情况,即两个集合都是有限测度. 那么有对任给的 $\varepsilon > 0$, $\{Q_k\}_{k=1}^{\infty}$ 和 $\{Q'_l\}_{l=1}^{\infty}$ 为两个集合的方体覆盖,满足 $m(E_1) + \varepsilon \geq \sum_{k=1}^{\infty} |Q_k|$ 和 $m(E_2) + \varepsilon \geq \sum_{l=1}^{\infty} |Q'_l|$. 由于 $\{Q_k \times Q'_l\}_{k,l=1}^{\infty} 6\infty$, 因此直接计算乘积的测度

$$m_*(E_1 \times E_2) \le m_*(\bigcup_{k,l=1}^{\infty} Q_k \times Q_l')$$

$$\le \sum_{k,l=1}^{\infty} |Q_k \times Q_l'| = \left(\sum_{k=1}^{\infty} |Q_k|\right) \left(\sum_{l=1}^{\infty} |Q_l'\right)$$

$$\le (_*(E_1) + \varepsilon) \left(m_*(E_2) + \varepsilon\right) \to m_*(E_1) m_*(E_2).$$

有了引理以后,设 $E_1 = G_1 \setminus Z_1$, $E_2 = G_2 \setminus Z_2$,其中 G_i 是 G_δ 集, Z_i 是零测集.那么集合 $G_1 \times G_2$ 也是 G_δ 集,由引理有,

$$m(G_1 \times G_2 \setminus E_1 \times E_2) \leq m((G_1 \setminus E_1) \times G_2) + m(G_1 \times (G_2 \setminus E_2)) = 0.$$

可知 $E_1 \times E_2 \in \mathcal{L}_{\mathbb{R}^{n_1+n_2}}$. 最后使用推论

$$m(E_1 \times E_2) = \int_{\mathbb{R}^{n_1 + n_2}} \chi_{E_1 \times E_2} dm \xrightarrow{\text{Fubini}} \int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} \chi_{E_1 \times E_2}^y dx \right) dy = m(E_1) m(E_2).$$

接下来的命题为卷积做铺垫,并且其证明不是显然的.

Proposition 2.7: 换元可测

若 $f \in \mathbb{R}^n$ 上的可测函数, 那么 $\tilde{f}(x,y) = f(x-y)$ 是 \mathbb{R}^{2n} 上的可测函数.

Proof: 由定义, 只要证明对任给的 a, 集合 $\tilde{E}_a\{(x,y):f(x-y)>a\}$ 是可测的. 考虑连续映射 $\Phi: \mathbb{R}^{2n} \to \mathbb{R}^n$, $(x,y) \mapsto x-y$. 记集合 $E_a=\{x:f(x)>a\}$ 是可测的, 实际有 $\tilde{E}_a=\Phi^{-1}(E_a)$. 根据可测集的结构, 只要处理 G_δ 集和零测集的原像即可. 处理 G_δ 集的步骤是显然的, 而对于零测集, 我们考虑其等测包, 即一个零测的 G_δ 集, 只要说明这个零测集的原像仍然零测就行了. 记 $\tilde{G}=\Phi^{-1}(G)$, 由于

$$\chi_{\tilde{G}}^{y}(x) = 1 \Leftrightarrow (x,y) \in \tilde{G} \Leftrightarrow x - y \in G \Leftrightarrow x \in G + y \Leftrightarrow \chi_{y+G}(x) = 1,$$

由 Fubini 定理, 有

$$m(\tilde{G}) = \int_{\mathbb{R}^{2n}} \chi_{\tilde{G}} dm = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \chi_{\tilde{G}}^y dx \right) dy = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \chi_{y+G} dx \right) dy = \int_{\mathbb{R}^n} m(y+G) dy = 0.$$

剩下的步骤是平凡的.

根据这个命题, 我们定义卷积如下.

Definition 2.6: 卷积 (convolution)

设 f, g 是可测函数, 且对几乎每个 $x \in \mathbb{R}^n$, 积分

$$(f * g)(x) = \int_{\mathbb{D}_n} f(x - y)g(y)dy$$

是有限的, 则称 f * g 是函数 f, g 的卷积.

有了之前的命题,很容易得到如下结果.

Theorem 2.14: 卷积的 L^1 估计

若 $f,g \in L^1$, 那么对几乎每个 $x \in \mathbb{R}^n$, (f * g)(x) 是良定的且是可积的, 并有如下估计

$$||f * g||_1 \le ||f||_1 ||g||_1.$$

接下来的 Fourier 变换是熟悉的东西, 定义如下.

Definition 2.7: Fourier Transform

若 $f \in L^1$, 其 Fourier 变换定义如下

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi ix\cdot\xi} dx.$$

Proposition 2.8: Fourier 变换的性质

 $\hat{f}(\xi)$ 是关于 ξ 的有界连续函数, 并且有 $\widehat{f * g}(\xi) = \hat{f}(\xi)\hat{g}(\xi)$.

其中连续性的证明用到 DCT, 似乎不方便直接按定义证明.

3 Differentiation and Integration

3.1 Differentiation of the Integral

本节讨论的问题是对积分求导的问题, 在连续的形况下, 有如下结果

$$\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt = f(x).$$

对称化后可以理解为某种平均, 也就是

$$\lim_{m(B)\to 0} \int_B f dm = f(x).$$

求导是一个局部的工作,为了让条件足够弱,我们考虑局部可积函数,定义如下.

${f Definition}$ 3.1: 局部可积函数 (L^1_{Loc})

$$L^1_{Loc} = \{f: f \in L^1(K), \ \forall K \subseteq_{cpt} \mathbb{R}^n\}$$

为了明确目标,首先陈述我们将证明的结果如下.

Theorem 3.1: Lebesgue 微分定理 (LDT)

若 $f \in L^1_{Loc}$, 则对几乎每个 $x \in \mathbb{R}^n$ 有

$$\lim_{r\to 0^+}\frac{1}{m(B(x,r))}\int_{B(x,r)}fdm=f(x).$$

这是一个定性的结果, 但是我们将通过一些定量的估计将其证明, 接下来我们将引进中心极大函数和弱 (1,1) 型算子.

Definition 3.2: Hardy-Littlewood 极大函数和中心极大函数

若 $f \in L^1_{Loc}$, 称 f 的 H-L 极大函数和中心极大函数为 f^* 和 Mf, 分别为

$$f^*(x) = \sup_{x \in B} \frac{1}{m(B)} \int_B |f| dm,$$

$$Mf(x) = \sup_{r>0} \frac{1}{B(x,r)} \int_{B(x,r)} |f| dm.$$

Remark 3.1: H-L 极大函数和中心极大函数等价

$$Mf \le f^* \le 2^n Mf$$
.

关键的观察是

$$\frac{1}{m(B)}\int_{B(x,2r)}|f|dm\geq \frac{1}{m(B)}\int_{B}|f|dm.$$

接下来是一个技术化的引理, 在之后还会多次出现.

Theorem 3.2: 覆盖引理

设 $\mathcal{B} = \{B_1, \dots, B_N\}$ 是 \mathbb{R}^n 中的一列开球, 那么存在 $\{B_{k_1}, \dots, B_{k_p}\}$ 满足其互不相交, 且

$$\sum_{i=1}^{p} m(B_{k_i}) \ge \frac{1}{3^n} m(\bigcup_{i=1}^{N} B_i).$$

Proof: 按直觉, 应该尽可能的选择不交的大球, 事实上也确实如此. 对于两个球 B_1 和 B_2 , 不妨设前者半径更大, 那么若两球相交, 后者必然落在前者的三倍大同心球内. 那么我们每次取出最大球, 便删去与这个三倍大的同心球相交的球即可, 重复有限次完成了证明.

接下来我们证明 M 是弱 (1,1) 型算子, 首先我们证明局部可积函数的中心极大函数是可测的.

Proposition 3.1: Mf 可测

若 $f \in L^1_{Loc}$, 那么 Mf 是下半连续的.

Proof: 只要证明 $E_{\alpha} = \{Mf > \alpha\}$ 是开集即可. 证明的关键在于扰动. 由定义, $\forall x \in E_{\alpha}$, 存在半径为 r 的球使得

$$\frac{1}{m(B(x,r))}\int_{B(x,r)}|f|dm>\alpha.$$

那么就有 $\rho > r$ 使得

$$\frac{1}{m(B(x,\rho))} \int_{B(x,r)} |f| dm > \alpha.$$

此时有 $x \in B(x, \rho - r) \subseteq E_{\alpha}$.

Remark 3.2:

若 $f \in L^1_{Loc}$, 那么 f^* 是下半连续的. 证明的手法是完全一致的.

现在来证明弱 (1,1) 型不等式.

Theorem 3.3: weak type (1,1) operator

存在常数 C > 0, 使得 $m(\{Mf > \alpha\}) \leq \frac{C}{\alpha}||f||_1$ 对任意 $\alpha > 0$, $f \in L^1$ 成立.

Proof: 设紧集 $K \subseteq E_{\alpha}$, 那么对任意 $x \in K$, 存在 $r_x > 0$ 使得

$$\frac{1}{m(B_(x,r_x))} \int_{B(x,r_x)} |f| dm > \alpha,$$

也即

$$\frac{1}{\alpha} \int_{B(x,r_x)} |f| dm > m(B(x,r_x)).$$

由紧性,结合 vitali覆盖,不难得到如下估计

$$m(K) \le \frac{3^n}{\alpha} ||f||_1.$$

从紧集过渡到 E_{α} 需要用到可测集可以从内部用闭集逼近, 而 \mathbb{R}^{n} 的闭集是 σ 紧的. \Box 一个形式相仿的不等式是 Tchebychev 不等式, 证明几乎是显然的.

Remark 3.3: Tchebychev Inequality

若 $f \ge 0$ 且可积, 令 $E_{\alpha} = \{f > \alpha > 0\}$, 那么有

$$m(E_{\alpha}) \leq \frac{1}{\alpha} \int f dm = \frac{1}{\alpha} ||f||_1.$$

最后, 我们按照最开始说的, 用定量估计证明定性问题.

Theorem 3.4: Lebesgue 微分定理 (LDT)

若 $f \in L^1_{Loc}$, 则对几乎每个 $x \in \mathbb{R}^n$ 有

$$\lim_{r \to 0^+} \frac{1}{m(B(x,r))} \int_{B(x,r)} f dm = f(x).$$

Proof: 首先, 我们已知这个结果是对连续函数处处成立的. 接下来考虑 $f \in L^1_{Loc}$ 的情况. 由于考虑的计算是局部的, 不妨设 f 是紧支的, 比如令 $\tilde{f} = f\chi$, 那么此时 $f \in L^1$, 由于 $C_c(\mathbb{R}^n) \subseteq L^1$, 对任给的 $\varepsilon > 0$, 设 $g \in C_c$, 满足 $||f - g||_1 < \varepsilon$. 那么

$$\left| \frac{1}{m(B(x,r))} \int_{B(x,r)} f dm - fx \right| \leq \left| \frac{1}{m(B)} \int_{B} (f-g) dm \right|$$

$$+ \left| \frac{1}{m(B)} \int_{B} g dm - g(x) \right| + |f(x) - g(x)|$$

$$\leq M(f-g) + \left| \frac{1}{m(B)} \int_{B} g dm - g(x) \right| + |f(x) - g(x)|$$

$$\stackrel{r \to 0^{+}}{\leq} M(f-g) + |f(x) - g(x)|.$$

令
$$E_{\alpha} = \{ \left| \limsup_{r \to 0^{+}} \frac{1}{m(B(x,r))} \int_{B(x,r)} f dm - f(x) \right| > \alpha \}.$$
 由上面的估计,有

$$E_{2\alpha} \subseteq \{M(f-g) > \alpha\} \cup \{|f-g| > \alpha\}.$$

利用对算子的估计和 Tchebychev 不等式, 有

$$m(E_{2\alpha}) \le \frac{C+1}{\alpha}||f-g||_1 < \frac{C+1}{\alpha}\varepsilon.$$

也就是 $m(E_{2\alpha}) = 0$. 记 $E = \bigcup_{n \ge 1} E_{1/n} = E_0$, 那么 m(E) = 0, 这完成了证明. 接下来看到一个 LDT 在测度上的应用.

Definition 3.3: Lebesgue 密度点

若 $E \in \mathcal{L}$, 我们称 x 是一个集合 E 的一个 Lebesgue 密度点, 若

$$\lim_{r \to 0^+} \frac{m(B_r \cap E)}{m(B_r)} = 1.$$

Corollary 3.1:

设 $E \in \mathcal{L}$, 那么 E 中的几乎所有点都是 E 的 Lebesgue 密度点.

Proof: 证明是直接的, 因为下式.

$$\lim_{r\to 0^+}\frac{1}{m(B_r)}\int_{B_r}\chi_E\stackrel{a.e.}{=}\chi(x)=1.$$

接下来的一个概念是有用的, 尽管有一些微妙. 为了严谨性, 接下来假设 $f: \mathbb{R}^n \to \mathbb{R}$.

Definition 3.4: Lebesgue point and Lebesgue set of a function

设 $f \in L^1_{Loc}$, 若

$$\lim_{r \to 0^+} \frac{1}{m(B_r)} \int_{B_r} |f(y) - f(x)| dy = 0,$$

那么 x 是 f 的 Lebesgue 点, 并记 f 的所有 Lebesgue 点为 L_f , 称为 f 的 Lebesgue 集.

Remark 3.4:

这个集合和所有使得 LDT 成立的点的集合应该是不同的, Lebesgue 集的条件更强, 集合应该更小一些, 但是微妙之处是, 没有一个很直接的例子表明这个想法的正确性. 另一个问题是, 在 Stein 的书上, 有要求 f(x) 有限, 若 $x \in L_f$, 而在 Folland 的书上则没有, 因为 Folland 的书上考虑的 L^p 空间的函数都是 $f: \mathbb{R}^n \to \mathbb{R}(\mathbb{C})$ 的.

Theorem 3.5: 几乎所有点都是 Lebesgue 点

若 $f \in L^1_{Loc}$, 那么

$$\lim_{r\to 0^+}\frac{1}{m(B_r)}\int_{B_r}|f(y)-f(x)|dy\stackrel{a.e.}{=}0.$$

Proof: 证明的思路与 LDT 类似. 由 LDT, 对任给的 $q \in \mathbb{Q}$, 有

$$\lim_{r \to 0^+} \frac{1}{m(B_r)} \int_{B_r} |f(y) - q| dy \stackrel{a.e.}{=} |f(x) - q|,$$

将上式中诱导的零测集记为 E_q , 令 $E=\bigcup_{q\in\mathbb{Q}}E_q$, 只要再证明 $\mathbb{R}^n\setminus E\subseteq L_f$. 而 $\forall x\in\mathbb{R}^n\setminus E=\bigcap_{q\in\mathbb{Q}}E_q$, 对任给的 $\varepsilon>0$, 都存在 $q\in\mathbb{Q}$ 使得 $|f(x)-q|<\varepsilon$. 直接计算

$$\begin{split} \lim_{r \to 0^+} \frac{1}{m(B_r)} \int_{B_r} |f(y) - f(x)| dy &\leq \lim_{r \to 0^+} \frac{1}{m(B_r)} \int_{B_r} |f(y) - q| dy + |q - f(x)| \\ &= |f(x) - q| + |q - f(x)| < 2\varepsilon. \end{split}$$

之前我们考虑的只有以x为中心的球的LDT,事实上我们可以推广这个条件.

Definition 3.5: 正则收缩 (shrink regularly)

设 $x \in \mathbb{R}^n$, 一族包含 x 的可测集合 \mathscr{F}_x 被称为正则收缩至 x, 若满足:

- (1) $\forall \varepsilon > 0, \exists E \in \mathscr{F}_x, s.t. \operatorname{diam} E < \varepsilon;$
- (2) $\exists C > 0$, s.t. $m(E) > Cm(B(r_E, x))$, $\forall E \in \mathscr{F}_x$, $r_E = \inf\{r > 0 : B(r, x) \supseteq E\}$.

这个概念其实可以视为某种对称性的保持, 因为很容易说明, 含 x 的方体或者球体的全体是正则收缩的, 然后矩体全体不是, 因为里面存在很细长的矩体破坏了 C>0 的一致性. 有了这个概念, 就能轻松推广原来的 LDT 了.

Theorem 3.6: generalized LDT

设 $f \in L^1_{Loc}$, 若集族 \mathscr{F}_x 正则收缩到 x, 那么

$$\lim_{\substack{m(U_{\alpha})\to 0\\U_{\alpha}\in\mathscr{F}_{\alpha}}}\frac{1}{m(U_{\alpha})}\int_{U_{\alpha}}f(y)dy=f(x)$$

对 L_f 中的所有点成立.

3.2 Approximation to the Identity

首先给出一个有趣的观察. 令

$$\varphi(x) = \frac{1}{m(B(0,1))} \chi_{B(0,1)}(x), \quad \varphi_t(x) = \frac{1}{t^n} \varphi\left(\frac{x}{t}\right).$$

那么有

$$(f * \varphi_t)(x) = \int f(x-y)\varphi_t(y)dy = \int f(x-y)\frac{1}{t^n m(B)}\chi_B(y/t)dy$$
$$= \frac{1}{t^n m(B)} \int_{B(0,t)} f(x-y)dy = \frac{1}{B(x,t)} \int_{B(x,t)} f(y)dy \stackrel{a.e.}{\to} f(x).$$

那么我们也可以把 LDT 写成如下形式:

$$f \in L^1_{Loc} \Rightarrow (f * \varphi_t)(x) \stackrel{a.e.}{\to} f(x).$$

现在我们定义逼近恒等, 这是对 Fourier Analysis 中 good kernel 的加强版.

Definition 3.6: Approximation to the Identity

称一族定义在 \mathbb{R}^n 上的可测函数 $\{K_t\}_{t>0}$ 是逼近恒等, 若其满足以下条件:

$$(A1) \int K_t dm = 1;$$

$$(A2) \ \exists C_1 > 0, \ s.t. \ |K_t(x)| \le \frac{C_1}{t^n}, \ \forall t > 0;$$

(A3)
$$\exists C_2 > 0$$
, s.t. $|K_t(x)| \le \frac{C_2 t}{|x|^{n+1}}, \ \forall t > 0, \ x \in \mathbb{R}^n \setminus \{0\}.$

这个条件其实比之前的 good kernel 要强, 以下用计算来验证. 首先有

$$\begin{split} \int_{|x| \ge \eta} \frac{t}{|x|^{n+1}} dx &= \int_{|x/t| \ge \eta/t} \frac{1}{|x/t|^{n+1}} d(x/t) \\ &= \int |x| \ge \eta/t \frac{1}{|x|^{n+1}} dx \xrightarrow{\text{polar}} \int_{\eta/t}^{\infty} dr \int_{S_r^{n-1}} \frac{1}{|x|^{n+1}} dS_r \\ &= \int_{\eta/t}^{\infty} dr \int_{S_r^{n-1}} \frac{1}{r^2} \frac{1}{|x/r|^{n+1}} dS_1 = m(S_1^{n-1}) \int_{\eta/t}^{\infty} \frac{dr}{r^2} \\ &= m(S_1^{n-1}) \frac{t}{\eta}. \end{split}$$

那么

$$\int |K_t|dm = \int_{|x| \le t} + \int_{|x| > t} |K_t|dm \le \int_{|x| \le t} \frac{C_1}{t^n} dm + \int_{|x| > t} \frac{C_2 t}{|x|^{n+1}} dm$$
$$= C_1 m(B(0,1)) + C_2 t \int_{|x| > t} \frac{1}{|x|^{n+1}} dm < \infty.$$

以及

$$\int_{|x|>\eta} |K_t| dm = \tilde{C} \frac{t}{\eta} \stackrel{t\to 0}{\to} 0.$$

这完成了验证. 接下来将通过直接的计算证明逼近恒等的逐点收敛性和 L^1 收敛性.

Theorem 3.7: 逼近恒等的逐点收敛性

若 $\{K_t\}_{t>0}$ 是一个逼近恒等, $f \in L^1$, 那么 $f * K_t \stackrel{a.e.}{\to} f$, 当 $t \to 0^+$.

Proof: 首先做差得

$$|(f * K_t)(x) - f(x)| \le \int |f(x - y) - f(x)| |K_t(y)| dy.$$

自然的想法是分段估计, 为了方便处理, 打包为下面的引理.

Lemma. 设 $f \in L^1$, $x \in L_f$, 记 $g(r) = \frac{1}{r^n} \int_{|y| \le r} |f(x-y) - f(x)| dy$. 那么有 g(r) 在 $(0, \infty)$ 上连续有界,并且 $\lim_{r \to 0^+} g(r) = 0$.

Proof: 仍然是直接的计算. 由于积分的绝对连续性和 L^1 条件, 有

$$\begin{split} g(x+h) - g(x) &= \frac{1}{(r+h)^n} \int_{B_{r+h} \setminus B_r} |f(x-y)f(x)| dy \\ &+ \left(\frac{1}{(r+h)^n} - \frac{1}{r^n}\right) \int_{B_r} |f(x-y) - f(x)| dy \\ &\stackrel{h \to 0}{\to} 0. \end{split}$$

且

$$\lim_{r \to 0} g(r) = \lim_{r \to 0} m(B) \frac{1}{m(B_r)} \int_{B_r} |f(x - y) - f(y)| dy \stackrel{L_f}{=} 0.$$

最后, 由于函数 $f \in L^1$, 函数在 (0,1] 上自然是有界的. 当 r > 1 时, 则

$$|g(r)| \le \frac{1}{r^n} \int_{|y| \le r} |f(x-y)| dy + \frac{1}{r^n} \int_{|y| \le r} |f(x)| dy$$

 $\le ||f||_1 + m(B)|f(x)| < \infty.$

继续计算如下:

 $|(f * K_t)(x) - f(x)| \le \int_{|y| \le t} + \sum_{k=0}^{\infty} \int_{2^{k-1}t < |y| \le 2^k t} |f(x-y) - f(x)| |K_t(y)| dy$ $\le \int_{|y| \le t} |f(x-y) - f(x)| \frac{C_1}{t^n} dy + \sum_{k=1}^{\infty} \int_k |f(x-y) - f(x)| \frac{C_2 t}{y^{n+1}} dy$ $\le C_1 g(t) + \sum_{k=0}^{\infty} \int_k |f(x-y) - f(x)| \frac{C_2 t}{(2^k)^{n+1}} dy$ $= C_1 g(t) + \sum_{k=0}^{\infty} C_2 t 2^{n+1} g(2^k t).$

分析是极限的艺术

最后的估计只要注意到 g 有界即可完成.

在上面我们完成了逼近恒等的逐点收敛证明,接下来我们处理其 L^p 收敛.

Theorem 3.8: 逼近恒等的 L^p 收敛

 $\forall f \in L^p, ||f * K_t - f||_p \to 0 \stackrel{\text{def}}{=} t \to 0.$

Proof: 首先做一些基本的计算.

$$||f * K_t - f||_p = || \int (f(x - y) - f(x))K_t(y)dy||_p$$

$$\stackrel{Minkovski}{\leq} \int ||(f(x - y) - f(x))K_t(y)||_p dy$$

$$\leq \int ||f_y - f||_p |K_t(y)| dy = C||f_y - f||_p.$$

现在只要证明 lp 积分的平移连续性. 设 $f \in L^p$, 由紧支连续函数在 lp 空间的稠密性, 设 $g \in C_c$, 且 $||g - f||_p \varepsilon/3$. 注意到

$$f_h - f = f_h - g_h + g_h - g + g - f,$$

那么

$$||f_h - f||_p \le ||f_h - g_h||_p + ||g_h - g||_p + ||f - g||_p = 2||f - g||_p + ||g_h - g||_p.$$

最后不等式的右端是一个有限积分平移, 自然连续.

接下来用逼近恒等加强之前的一个结果.

Theorem 3.9: 光滑紧支函数的 L^p 稠密性

记光滑紧支函数为 C_c^{∞} , 那么有 $C_c^{\infty} \subseteq L^p$.

Proof: 由卷积的求导, 我们只要找一个光滑化子将我们之前的连续紧支函数光滑化即可. 这里用到一个不太困难的计算结果, 记为以下引理.

Lemma. 若有界紧支函数 $\varphi \in L^1$, 那么函数族 $\theta K_t(x) = \frac{t^{-n}\varphi(x/t)}{||\varphi||_1}$ 是一个逼近恒等.

此时结果已经呼之欲出, 因为我们有一个经典的光滑化子: Bump function. 其显式表达如下:

$$\psi(x) = \begin{cases} e^{-\frac{1}{1-|x|^2}} & |x| < 1; \\ 0 & |x| \ge 1. \end{cases}$$

3.3 Functions with bounded Variation

本节开始重新考虑如下问题.

$$F(b) - F(a) \stackrel{?}{=} \int_a^b F'(x) dx.$$

首先要有一些基本的要求, 右式要有意义, 那么 F' 应该几乎处处存在并且可积. 左端的值不能随意更改, 因此 F 应该连续. 这些条件其实还不够, 接下来会出现之前构造的一个函数, 作

为这个问题的奇点, 消去这个奇点后才能得到最后的充要条件. 在此之前, 我们先研究一个必要条件, 并最终得到一个更弱的不等式结果.

为了简洁性, 略去可求长曲线的内容, 直接讨论 BV 函数.

Definition 3.7: 有界变差函数 (bounded variation)

设 $f:[a,b] \to \mathbb{R}(\mathbb{C}), P:a=t_0<\dots< t_N=b$ 是区间的一个划分,定义变差为 $V(f,P)=\sum\limits_{j=1}^{N}|f(t_j)-f(t_{j-1})|,$ 若 $\sup\limits_{P}V(f,P)<\infty$. 那么称 f 是有界变差的,记 $V_a^b(f)=\sup\limits_{P}V(f,P)$ 为 f 的总变差,BV[a,b] 为区间上的有界变差函数全体.

通过直接的计算知, 有界单调函数是有界变差函数. 一个不是有界变差函数的例子是

$$f(x) = \begin{cases} x \sin \frac{1}{x} & 0 < x \le 1; \\ 0 & x = 0. \end{cases}$$

由三角不等式知, BV[a,b] 是一个向量空间. 接下来我们可以看到, 所有有界变差函数都能被单增函数简单地表示出来.

Theorem 3.10: Jordan 分解

f 是有界变差函数, 当且仅当 f 是两个单增函数的差.

Proof: 单增函数的差显然是有界变差的,接下来证明另一边. 对于一个有界变差函数,我们总有下面的等式

$$V_a^b(f) = V_a^x(f)V_x^b(f).$$

由定义, $V_a^b(f) \leq V_a^x(f) + V_x^b(f)$. 另一半不等式是很基本的 ε 技巧, 稍微讨论 x 的位置即可. 注意到 $V_a^x(f)$ 是单增的, 那么 $f(x) = V_a^x(f) - (V_a^x(f) - f(x))$. 只要证明函数 $h(x) = V_a^x(f) - f(x)$ 是单增的. 直接计算, 设 $x_1 < x_2$, 那么

$$h(x_2) - h(x_1) = (V_a^{x_2}(f) - f(x_2)) - (V_a^{x_1}(f) - f(x_1)) = V_{x_1}^{x_2} - (f(x_2) - f(x_1)) \ge 0.$$

接下来要证明的结果是,单增函数的微分定理.

Theorem 3.11: 单增函数的微分定理

设 f 在 [a, b] 上单增, 则有

- (1) f在区间上几乎处处可微;
- (2) $f' \in L^1[a, b];$

(3)
$$\int_a^b f'dx \le f(b) - f(a).$$

我们的证明是覆盖论证,这个技术在后面的 N-L 公式的证明中也会用到. 接下来我们证明一维版本的 Vitali 覆盖引理,之前我们遇到了一个有限版本的覆盖引理,那个几乎是显然的,这个是相当不平凡的. 为了方便,接下来考虑的对象是闭集族.

Definition 3.8: Vitali 覆盖

设 $E \subseteq \mathbb{R}$, 若闭集族 $\Gamma = \{I_{\alpha}\}_{{\alpha} \in \Lambda}$ 满足对任意 $x \in E$, 有

$$\inf\{|I|: I \in \Gamma, \ x \in I\} = 0,$$

则称 Γ 是 E 的一个 Vitali 覆盖.

Theorem 3.12: Vitali 覆盖

设 $E \subseteq \mathbb{R}$ 且 $m_*(E) < \infty$, 若 Γ 是 E 的一个 Vitali 覆盖, 那么对任给的 $\varepsilon > 0$, 存在互不相交的 I_1, \dots, I_N 使得 $m_*\left(E \setminus \bigcup_{j=1}^N I_j\right) < \varepsilon$.

Proof: 证明用到的技术被称为时停. 原本的集合 E 未必可测, 但是由定义, 可以将其稍微膨胀成一个开集 G, 满足 $m(G) < \infty$ 且 $E \subseteq G$. 因为我们的 Vitali 覆盖本质上只要求小的集合存在, 不妨假设 $\forall I \in \Gamma$ 有 $I \subseteq G$. 现在给定一个 $\varepsilon > 0$, 开始实践贪心算法.

设 $\delta_0 = \sup\{|I|: I \in \Gamma\} < \infty$, 那么取出 $|I_1| > \frac{\delta_0}{2}$, 如果已经有 $m_*(E \setminus I_1) < \varepsilon$, 那么已经完成, 如果不然, 则继续选取.

记 $\delta_1 = \sup\{|I|: I \in \Gamma, \ I \cap I_1 = \varnothing\}$. 首先要说明此时的 $\delta_1 > 0$, 否则无法进行选取. 在 $E \setminus I_1$ 中取出 x, 那么 $d(x,I_1) > 0$ (\mathbb{R} 上有界闭集的紧性), 由于 Γ 是一个 Vitali 覆盖, 那么此时能取出充分小的区间, 因此 $\delta_1 > 0$. 接下来重复这样的操作.

进行到第 k+1 步时,已有 $m_*(E\setminus\bigcup_{j=1}^k I_j)\geq \varepsilon$,那么 $\delta_k=\sup\{|I|:I\in\Gamma,\ I\cap\bigcup_{j=1}^k I_j\}>0$,取 $I_{k+1}>\frac{\delta_k}{2}$. 若有限步后能停止,那么证明已经结束.

若不然, 由取法, 取出了一列闭集 $\{I_j\}_{j=1}^{\infty}$, 满足 $\sum\limits_{j=1}^{\infty}|I_j|< m(G)<\infty$. 那么有一个 N 使得 $\sum\limits_{j=N+1}^{\infty}|I_j|<\frac{\varepsilon}{5}$, 令 $A=E\setminus\bigcup\limits_{j=1}^{N}I_j$, 希望证明 $\bigcup\limits_{j=1}^{N}I_j$ 已经满足我们的要求. 任取 $x\in A$, 那么有 $r_x=d(x,\bigcup\limits_{j=1}^{N}I_j)>0$. 因为 Γ 是一个 Vitali 覆盖, 那么能找到 $I\in\Gamma$ 满足 $|I|< r_x$. 这个 I 自然满足 $I\cap\bigcup\limits_{j=1}^{N}I_j=\varnothing$. 并且由之前对 δ_N 的构造, 有 $|I|\le\delta_N<2|I_{N+1}|$. 因为 $\sum\limits_{j=1}^{\infty}|I_j|<\infty$, 知 $|I_j|\to 0$, 不难知道,当 j 充分大,有 $I_j\cap I\neq\varnothing$,令 n_0 为满足这个关系的第一个指标. 那么对于 I_{n_0} 有 $n_0>N$ 和 $|I|\le\delta_{n_0-1}<2|I_{n_0}$,因此有 $5I_{n_0}\supseteq I$,那么由 x 的任意性, $A\subseteq\bigcup\limits_{j=N+1}^{\infty}5I_j$. 那么 $m_*(A)<\varepsilon$,这完成了证明.

Remark 3.5:

这个定理还有一些其他相似的版本和不同的证明,有的用到紧集的膨胀,有的用到了选择公理 (Zorn 引理).一些内容可以在这里找到 Vitali 覆盖

接下来为了证明几乎处处可微, 我们要引进 Dini 数这一概念, 并且说明引入这个概念的意义.

Definition 3.9: Dini Number

记差商为
$$\Delta_h(f)(x) = \frac{f(x+h) - f(x)}{h}$$
. 四个 Dini 数为
$$D^+(f)(x) = \limsup_{h \to 0^+} \Delta_h(f)(x), \quad D_+(f)(x) = \liminf_{h \to 0^+} \Delta_h(f)(x),$$

$$D^-(f)(x) = \limsup_{h \to 0^-} \Delta_h(f)(x), \quad D_-(f)(x) = \liminf_{h \to 0^-} \Delta_h(f)(x).$$

一个基本的观察是 $D^+ \geq D_+$ 和 $D^- \geq D_-$. 期待的结果是 $D^+ = D_+ = D^- = D_-$ 几乎处处成立,要证明这个结果,其实只要能证明 $D^+ \leq D_-$ 对单增函数成立即可,因为 F(x) = -f(-x) 也是单增函数,证明了前一个不等式,就能得到 $D^- \leq D_+$,因此能得到 $D^+ \leq D_- \leq D_- \leq D_+ \leq D_+$,这迫使等号成立. 按照这个思路,现证明单调函数的微分定理如下.

Proof: 要证明 $D^+ \stackrel{a.e.}{\leq} D_-$,考虑集合 $E = \{x : D^+(f)(x) > D_-(f)(x)\}$. 希望证明这个集合的测度是零,先将这个集合做一定的分解 $E = \bigcup_{r,s \in \mathbb{Q}} \{D^+(f)(x) > r > s > D_-(f)(x)\} = \bigcup_{r,s \in \mathbb{Q}} A_{r,s}$,现在希望证明 $m(A_{r,s}) = 0$. 注意,f 是单调函数,因此是可测的,集合 $A_{r,s}$ 也是可测的,反设 $m(A_{r,s}) > 0$,这里的 r,s 是给定的数. 接下来开始测度估计.

首先给定一个充分小的 $\varepsilon > 0$, 将 A 膨胀为开集 G, 并且 $m(G) < (1 + \varepsilon)m(A)$, 任取 $x \in A$, 由 $D^-(f)(x) < s$, 存在一列趋于 0 的正数 $\{h_n^x\}$, 使得

$$f(x) - f(x - h_n^x) < sh_n^x,$$

由于 x 是 G 的内点,可以不妨 $[x-h_n^x,x]\subseteq G$, 那么由 x 的任意性, $\Gamma=\{[x-h_n^x,x]\}_{x\in A,n\in\mathbb{N}}$ 是 A 的一个 Vitali 覆盖, 那么有 $[x_1-h_1,x_1],\cdots,[x_N-h_N,x_N]$ 使得

$$m(A \setminus \bigcup_{j=1}^{N} [x_j - h_j, x_j]) < \varepsilon.$$

另一方面, 之前假设每个区间都在开集 G中, 因此

$$\sum_{j=1}^{N} h_j \le m(G) < (1+\varepsilon)m(A).$$

合为

$$\sum_{j=1}^{N} (f(x_j) - f(x_j - h_j)) < s \sum_{j=1}^{N} h_j < s(1 + \varepsilon)m(A).$$

现在炮制不等式的另一端. 将注意到上一不等式的左端, 将集合稍微缩小为 $B=A\cap \bigcup_{j=1}^{N}(x_j-h_j,x_j)$, 有 $m(B)>m(A)-\varepsilon$, 重复之前类似的过程, 可以造出一个 Vitali 覆盖 $\Gamma'=\{[y,y+h_m^y]\}_{y\in B,m\in \mathbb{N}},$ 然后有相似的不等式如下

$$\sum_{j=1}^{M} (f(y_j + h_j) - f(y_j)) > r \sum_{j=1}^{M} h_j > r(m(B) - \varepsilon) > r(m(A) - 2\varepsilon).$$

不等式合为

$$r(m(A) - 2\varepsilon) < s(1 + \varepsilon)m(A) \stackrel{\varepsilon \to 0}{\Longrightarrow} r \le s,$$

这导出了矛盾.

现在离得到几乎处处可微的条件还差说明 f' 是几乎处处有限的, 我们可以通过不等式来得到这个事实. 首先将 f(x) 在端点处常值延拓, 得到一个定义在 $\mathbb R$ 上的函数, 并且定义差商函数 $g_n(x) = \frac{f(x+1/n) - f(x)}{1/n}$, 由之前的计算, $g_n \stackrel{a.e.}{\to} f'$ 在区间上成立. 由 Fatou 引理, 直接计算

$$\int_{a}^{b} f'dx \le \liminf_{n \to \infty} \int_{a}^{b} g_{n}dx$$

$$= \liminf_{n \to \infty} n \left(\int_{b}^{b+1/n} fdx - \int_{a}^{a+1/n} fdx \right)$$

$$\le f(b) - f(a).$$

这表明 $f' \in L^1[a,b]$, 那么 f' 因此几乎处处有限, 结合之前的结论, f 是几乎处处可微的.

Corollary 3.2: BV 函数的微分定理

设 $f \in BV[a,b]$, 那么 f 几乎处处可微且 $f' \in L^1[a,b]$.

但是问题并没有因此解决, 我们只得到了不等式, 接下来的反例表明, 仅仅是有界变差这个条件是不够的.

3.4 Cantor-Lebesgue Function

这个函数我们之前已经构造过了一次, 现在我们需要证明他的一些性质, 并以此说明这个函数是 N-L 公式的一个反例.

记 Cantor 集
$$\mathcal{C} = [0,1] \setminus G$$
, 其中 $G = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{2^{k-1}} I_{k,j}$, 且 $|I_{k,j}| = \frac{1}{3^k}$.

Proposition 3.2: Cantor-Lebesgue 函数的性质

记 f 为 Cantor-Lebesgue 函数, 那么

- (1) f单增;
- (2) $f(G) \stackrel{dense}{\subseteq} [0,1];$
- (3) f连续;
- (4) $f' \stackrel{a.e.}{=} 0$.

Proof: 若记

$$g = \sum_{k=1}^{\infty} \sum_{j=1}^{2^{k-1}} \frac{2j-1}{2^k} \chi_{I_{k,j}},$$

那么可以定义 ƒ 如下

$$f = \begin{cases} 0 & x = 0; \\ \sup\{g(t) : t \in [0, x) \cap G\} & x \in (0, 1); \\ 1 & x = 1. \end{cases}$$

因此 $f(G) = \{\frac{2j-1}{2^k} : 1 \le j \le 2^{k-1}, k \in \mathbb{N}\}$, 可见 $f(G) \subseteq [0,1]$. 而单增函数只有跳跃间断点, 这迫使 f 连续. 在集合 G 上 f' = 0, 而 m(G) = 1, 也就是 $f' \stackrel{a.e.}{=} 0$. □ 此时的不等式是

$$1 = f(1) - f(0) > \int_0^1 f' dx = 0.$$

3.5 Absolutely Continuous Functions

Definition 3.10: 绝对连续函数

设 $f:[a,b] \to \mathbb{R}$, 若对任给的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对 [a,b] 中的任意有限个互不相交的开区间 $\{(a_k,b_k)\}_{k=1}^N$, 当满足 $\sum_{k=1}^N |a_k-b_k| < \delta$, 则有 $\sum_{k=1}^N |f(a_k)-f(b_k)| < \varepsilon$, 那么 f 是绝对连续函数.

显然的, Lipschitz 函数是绝对连续函数, 绝对连续函数是一致连续的 (当然在紧区间上的连续函数自然是一致连续的). 我们之前讨论 Cantor-Lebesgue 函数, 现在可以直接计算说明其不是一个绝对连续函数.

记 \mathcal{C}_n 为消去边界点的 Cantor 集, 可以重写为 $\mathcal{C}_n = \bigsqcup_{k=1}^{2^n} (a_k, b_k)$. 注意到 $m(\mathcal{C}_n) = \left(\frac{2}{3}\right)^n$, 而 $\sum_{k=1}^{2^n} |f(a_k) - f(b_k)| = 1$, 这导出了矛盾.

记 AC[a,b] 为 [a,b] 上的绝对连续函数全体. 那么按定义, 不难看出 AC[a,b] 是一个向量空间. 并且 $AC[a,b] \subseteq BV[a,b]$.

以下记录一些关于 AC 函数的性质.

Proposition 3.3: AC 保可测性

设 $f \in AC(\mathbb{R})$, 那么 f 把零测集映成零测集, 把可测集映成可测集.

Proof: 零测集 Z 可以膨胀成开集 G, 使得 $m(G) < \delta$, 有开集的结构定理, 有 $G = \bigsqcup_{k=1}^{\infty} (a_k, b_k)$, 那么

$$f(Z) \subseteq \bigcup_{j=1}^{\infty} [f(m_k), f(M_k)].$$

注意到 $\sum_{k=1}^{\infty} |m_j - M_j| \le m(G) < \delta$, 那么由条件,得 $m(f(Z)) \le \sum_{k=1}^{\infty} |f(m_k) - f(M_k)| < \varepsilon$. 而对于可测集 E, 可以写为 $E = F \cup Z$, 而 F_{σ} 集 F 的像其实还是 F_{σ} 集, 那么完成了证明. □与这个命题相关的结论与类 Cantor 集有关.

Example 3.1:绝对连续函数的原像未必可测

设 $f(x) = \int_0^x \chi_{\hat{\mathcal{C}}c} dx = m([0,x] \setminus \hat{\mathcal{C}})$. 其中 $\hat{\mathcal{C}}$ 是类 Cantor 集. 由积分的绝对连续性, 函数是绝对连续的. 利用 Lebesgue 微分定理, 函数在一个正测度集合上导函数为零, 但是函数确实是严格单增的. 一个观察是 $f(\hat{\mathcal{C}}) \stackrel{injective}{=} f([0,1]) \setminus f([0,1] \setminus \hat{\mathcal{C}})$. 而由函数的定义, 函数在类 Cantor 集上是保测度的, 因此上面的集合测度实际为零. 由于函数是一个单射, 并且 $\hat{\mathcal{C}}$ 是一个正测度集, 由熟悉的 Vitali 不可测集的构造, 有 $f(\mathcal{N})$ 可测, 但是其原像是不可测的. 不过有趣的是, 单增的绝对连续函数都有 $f^{-1}(E) \cap \{f' > 0\}$ 可测, 证明并不困难. 值得注意的是, 在以上论证的基础上可得积分换元公式.

另一个结论和变差有关, 需要使用 N-L 公式.

设 $f \in AC[a,b]$, 那么 $\int_a^x |f'| dx = V_a^x(f)$.

Proof: 对于 BV 函数, 有

$$f(x) = P_f(x) - N_f(x) + f(a) \Rightarrow f'(x) \stackrel{a.e.}{=} P'_f(x) - N'_f(x).$$

因此

$$\int_{a}^{x} |f'| \le \int_{a}^{x} P_f' + \int_{a}^{x} N_f' \le P_f + N_f = V_a^x(f).$$

对于另一边,

$$\sum |f(t_j) - f(t_{j-1})| = \sum |\int_{t_{j-1}}^{t_j} f'| \le \sum \int |f'| = \int |f'|.$$

另一种处理的方式很有意思, 用到了逼近的方式. 由于 $f' \in L^1$, 那么存在阶梯函数 ψ 使 得 $||f-\psi||_{1}\varepsilon$, 记 f'=g+h, 其中 h 是可积的. 两边同时积分, 由 N-L 公式, 得 f(x)-f(a)= $\int_a^x \psi + \int_a^x h = \Psi(x) + H(x)$. 由三角不等式, 两边求变差有 $V_a^x(f) + V_a^x(H) \leq V_a^x(\Psi)$. 注意到

$$V_a^x(H) \leq \int_a^x |H'| \stackrel{LDT}{=} \int_a^x |h| \leq ||h||_1 < \varepsilon.$$

那么

$$V_a^x(f) > V_a^x(\Psi) - \varepsilon \stackrel{P}{\geq} \sum \left| \int_{t_{j-1}}^{t_j} \psi \right| - \varepsilon = \sum \int |\psi| - \varepsilon = \int |\psi| - \varepsilon > \int_a^x |f'| - 2\varepsilon.$$

最后, 我们来证明微分定理, 其实也就是 N-L 公式.

Theorem 3.13: N-L 公式

- (1) 若 $f \in [a,b]$, 那么有 f 几乎处处可微, $f' \in L^1[a,b]$ 且 $f(x) f(a) = \int_a^x f'$.
- (2) 若 $f \in L^1[a,b]$, 则存在 F 几乎处处可微, 满足 $F' \stackrel{a.e.}{=} f$.

Proof: 其实主要是证明第一条. 设 $g(x) = \int_a^x f'$, 那么 $g' \stackrel{LDT, a.e.}{=} f'$, 而 $f - g \in AC[a, b]$,

只要证明导数几乎处处为零的绝对连续函数是常值函数就行了. 设 $c \in (a,b]$ 使得 $f(c) \neq f(a)$, 记 $\varepsilon_0 = \frac{|f(c) - f(a)|}{3}$, 由绝对连续的定义, 有 $\delta_0 > 0$. 现在定义 $E = \{x \in (a,c): f'(x) = 0\}$, 设 y 充分小, 那么对每个 $x \in E$, 有一列 h_k^x 使 得 $[x,x+h_k^x]\subseteq (a,c)$,并且有 $|f(x)-f(x+h_k^x)|< h_k^xy$,这诱导了一个 Vitali 覆盖. 那么 $(x_1 - a) + \cdots + (c - (x_N + h_N)) < \delta_0$,有不等式

$$3\varepsilon_0 = |f(c) - f(a)| \le * + y \sum_{j=1}^{N} h_j < \delta_0 < \varepsilon_0 + y(b-a),$$

而 y 的选取和 ε_0 无关, 这迫使 $\varepsilon_0 = 0$, 因此完成了证明.

第二条就是微分定理加上积分的绝对连续性,不再赘述.

4 Abstract Measure

4.1 Measure and Integration

以下考虑的是一般的空间 $X \neq \emptyset$. 首先从测度这一概念开始处理.

Definition 4.1: Algebra

 $A \subseteq 2^X$ 被称为代数, 若满足:

- $(1) \varnothing, X \in \mathcal{A};$
- (2) $E_1, E_2 \in \mathcal{A} \Rightarrow E_1 \cup E_2 \in \mathcal{A}$;
- (3) $E \in \mathcal{A} \Rightarrow E^c \in \mathcal{A}$.

之前定义过 σ -代数和生成 σ 代数, 这里不再赘述, 仅明确记号. 记 \mathcal{M} 为一个 σ -代数, 由集族 $\mathscr{F} \subseteq 2^X$ 生成的 σ -代数记为

$$\sigma(\mathscr{F}) = \bigcap_{\mathscr{F} \subseteq \mathcal{M}} \mathcal{M}.$$

Definition 4.2: Measure

测度是一个函数 $\mu: \mathcal{M} \to [0, +\infty]$ 满足:

- (1) $\mu(\emptyset) = 0$;
- (2) 若 $\{E_k\}_{k=1}^{\infty} \subseteq \mathcal{M}$ 是一列互不相交的集合,则 $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j)$.

我们把三元组 (X, \mathcal{M}, μ) 称为一个测度空间. 若 $\mu(X) < \infty$, 则称 μ 有限.

除了实数上的 Lebesgue 测度, 测度空间的例子还有很多, 比如概率测度 ($\mu(X)=1$), Dirac 测度 (单点为 1, 其余为 0).

抽象的测度其实和之前的 Lebesgue 测度有很多共性, 这是公理化带来的, 我们不难证明测度具有以下性质, 其中的大多数证明就是一些集合的划分, 证明略去.

Proposition 4.1 (property of measure).

- (1) $E_1 \subseteq E_2 \in \mathcal{M} \Rightarrow \mu(E_1) \leq \mu(E_2);$
- (2) $\{E_k\}_{k=1}^{\infty} \subseteq \mathcal{M} \Rightarrow \mu\left(\bigcup_{k=1}^{\infty} E_k\right) \leq \sum_{k=1}^{\infty} \mu(E_k);$
- (3) $E_k \in \mathcal{M} \nearrow E \Rightarrow \mu(E) = \lim_{N \to \infty} \mu(E_N);$
- (4) $E_k \in \mathcal{M} \setminus E$, $\mu(E_1) < \infty \Rightarrow \mu(E) = \lim_{N \to \infty} \mu(E_N)$.

Definition 4.3: μ -null set

集合 $E \in \mathcal{M}$ 被称为 μ -零测集, 若 $\mu(E) = 0$.

Definition 4.4: μ -a.e

一个性质 P 对任意 $x \in X$ 成立, 除了一个 μ -零测集, 则称性质 P 是 μ -a.e. 的.

Definition 4.5: completeness of measure

一个测度 μ 被称为完备的, 若满足

$$\mu(E) = 0, \ \forall S \subseteq E \Rightarrow S \in \mathcal{M}.$$

Example 4.1: an incomplete example

 \mathbb{R}^n 上的 Lebesgue 测度是完备的,但是 $m \mid_{\mathcal{B}}$ 不是完备的,不然就有 $\mathcal{L} = \mathcal{B}$. 核心在于 $\mathcal{B} \subsetneq \mathcal{L}$. 这个事实的证明依赖 Cantor-Lebesgue 函数 f, 令 $\psi = x + f$, 那么 ψ 是一个同胚映射,注意到 $m_{\mathcal{L}}(\psi(\mathcal{C})) = 1$, 那么 $\mathcal{N} \subseteq \psi(\mathcal{C})$ 的原像 Lebesgue 可测但是 $\psi^{-1}(\mathcal{N}) \notin \mathcal{B}$.

Definition 4.1 (measurable function). 称广义函数 $f: X \to [-\infty, \infty]$ 是可测的, 若对 $\forall a \in \mathbb{R}$, $f^{-1}([-\infty, a)) = \{f < a\}$ 都可测. 复值函数 $f: X \to \mathbb{C}$ 可测, 若其实部和虚部均可测.

有了可测函数的概念, 我们按照之前的结合运算, 可立刻得到下面的结果.

Proposition 4.2 (limit operation). 若 $\{f_k\}_{k=1}^{\infty}$ 可测, 那么下列运算结果均可测

$$\sup f_k$$
, $\inf f_k$, $\limsup_{k \to \infty} f_k$, $\liminf_{k \to \infty} f_k$.

接下来我们按照四步走定义积分,从示性函数,到简单函数,到非负可测函数,最后到一般的可积函数.对比之前的证明,我们这里的做法是一样的.以下把一些记号和结论列举.

Definition 4.2 (non-negative measurable function). 记集合 $L^+(X)$ 为 X 上的非负可测函数全体.

Definition 4.3 (integrable function). 可测函数 f 可积, 若 $\int f^+$ 和 $\int f^-$ 均有限. 记 $L^1(X,\mu)$ 为 X 上的可积函数全体.

Theorem 4.1 (simple approximation). 任给 $f \in L^+(X)$, 有一列非负简单函数 $\{\varphi_k\}_{k=1}^{\infty}$ 满足 $\varphi_k \nearrow f$.

Theorem 4.2 (MCT). $\{f_k \geq 0\}_{k=1}^{\infty} \subseteq L^+, f_k \nearrow f \Rightarrow \lim_{k \to \infty} \int f_k = \int f$.

Theorem 4.3 (Fatou lemma). $\{f_k\}_{k=1}^{\infty} \subseteq L^+ \Rightarrow \liminf_{k \to \infty} \int f_k \ge \int \liminf_{k \to \infty} f_k$.

Theorem 4.4 (DCT). 可测函数列 $\{f_k\}_{k=1}^{\infty}$ 满足 $f_k \to f$,且存在控制函数 $g \in L^1$ 使得 $|f_k| \leq g$,那么 $\lim_{k \to \infty} \int f_k = \int f$.

上面记号中函数列的收敛是指几乎处处收敛,在实分析中我们已经看到这与逐点收敛在积分意义下是无差异的,因此不做区分.

4.2 Exterior Measure and Premeasure

测度这个概念不是很自然,接下来将其去抽象化为外测度,甚至是预测度,在这个过程可以看到,测度是如何构造的,并且是以一种相对自然的方式产生的.

Definition 4.6: exterior measure

外测度是一个函数 $\mu^*: 2^X \to [0, +\infty]$ 满足以下条件:

- (1) $\mu^*(\varnothing) = 0$;
- (2) $\forall E_1 \subseteq E_2 \in 2^X \Rightarrow \mu^*(E_1) \le \mu^*(E_2);$

(3)
$$\mu^* \left(\bigcup_{k=1}^{\infty} E_k \right) \le \sum_{k=1}^{\infty} \mu^*(E_k).$$

将外测度改进到测度需要一个条件, 我们在直接的 Lebesgue 测度的构造中已经给出了.

Definition 4.7: μ^* -measurable

称集合 $E \subseteq 2^X$ 是 μ^* -可测的, 若其满足如下的 Carathéodory 条件

$$\forall A \subseteq X, \quad \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c).$$

这个条件仅给出了集合在计算上的信息,但是作用是巨大的,下面的定理反映了这个事实.

Theorem 4.1: Carathéodory

记 M 为 μ^* -可测集合全体, 那么 M 是一个 σ -代数, 并且 $\mu = \mu^* \mid_M$ 是一个完备测度.

Proof: 由 Carathéodory 条件, 只要验证 \mathcal{M} 对可数并封闭即可. 先证明有限的情况. 设 $E_1, E_2 \in \mathcal{M}$, 那么

$$\mu^*(A) = \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c)$$

$$= \mu^*(A \cap E_1 \cap E_2) + \mu^*(A \cap E_1 \cap E_2^c) + \mu^*(A \cap E_1^c \cap E_2) + \mu^*(A \cap E_1^c \cap E_2^c)$$

$$> \mu^*(A \cap (E_1 \cup E_2)) + \mu^*(A \cap (E_1 \cup E_2)^c) > \mu^*(A).$$

若此时的 E_1 , E_2 是不交的, 则还有

$$\mu^*(E_1 \cup E_2) = \mu^*(E_1 \cup E_2 \cap E_2) + \mu^*(E_1 \cup E_2 \cap E_2^c) = \mu^*(E_1) + \mu^*(E_2).$$

由归纳法, \mathcal{M} 对有限并封闭, 并且由有限可加性. 接下来处理可数的情况, 自然是考虑测度的连续性. 不失一般性, 设 E_j 是一列互不相交的集合, 设 $G_n = \bigcup\limits_{j=1}^n E_j$, $G = \bigcup\limits_{j=1}^\infty E_j$, 即 $G_n \nearrow G$. 那么有

$$\mu^*(G_n \cap A) = \mu^*(E_n \cap G_n \cap A) + \mu^*(E_n^c \cap G_n \cap A)$$
$$= \mu^*(E_n \cap A) + \mu^*(G_{n-1} \cap A) = \sum_{i=1}^n \mu^*(E_i \cap A).$$

从而

$$\mu^*(A) = \mu^*(G_n \cap A) + \mu^*(G_n^c \cap A) \ge \sum_{j=1}^n \mu^*(E_j \cap A) + \mu^*(G^c \cap A)$$

$$\stackrel{n \to \infty}{\ge} \sum_{j=1}^\infty \mu^*(E_j \cap A) + \mu^*(G^c \cap A) \ge \mu^*(G \cap A) + \mu^*(G^c \cap A) \ge \mu^*(A).$$

同时

$$\sum_{j=1}^{\infty} \mu^*(E_j) = \sum_{j=1}^{\infty} \mu^*(E_j \cap X) \ge \mu^*(G \cap X) = \mu^*(G) \ge \mu^*(G_n) = \sum_{j=1}^{n} \mu^*(E_j)$$

$$\stackrel{n \to \infty}{\ge} \sum_{j=1}^{\infty} \mu^*(E_j).$$

因此 $\mu^* \mid_{\mathcal{M}}$ 是一个度量. 设 $E \subseteq \mathcal{M}$ 满足 $\mu^*(E) = 0$, 对于任意 $A \subseteq E$, 有

$$\mu^*(B) \le \mu^*(A \cap B) + \mu^*(A^c \cap B) \le \mu^*(A) + \mu^*(B) \le \mu^*(B),$$

从而 $A \in \mathcal{M}$, 也就是说 $\mu^* \mid_{\mathcal{M}}$ 是完备的.

当然,外测度是定义在幂集上的,事实上还能从更小的对象开始处理.

Definition 4.8: premeasure

称函数 $\mu_0: \mathcal{A} \to [0, +\infty]$ 是一个预测度, 若满足:

(1) $\mu_0(\emptyset) = 0;$

(2) 若不交的一列集合
$$\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{A}$$
 满足 $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$, 那么 $\mu_0 \left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu_0(E_j)$.

由于预测度是定义在代数上的,因此单调性和有限可加性是显然的. 现在要将预测度提升至外测度,定义的方式和之前定义 Lebesgue 外测度的时候是一致的,要用到所谓的方体覆盖.

Theorem 4.2: construct an exterior measure

若 μ_0 是一个定义在 $A \subseteq 2^X$ 上的预测度, 那么定义 2^X 上的 μ^* 如下

$$\mu^*(E) = \inf\{\sum_{j=1}^{\infty} \mu^*(E_j) : E \subseteq \bigcup_{j=1}^{\infty} E_j, \ E_j \in \mathcal{A}\}.$$

那么 μ^* 是一个 2^X 上的外测度, 满足

- (1) $\mu^* \mid_{\mathcal{A}} = \mu_0;$
- (2) $\mathcal{A} \subseteq \mathcal{M} = \{\mu^*\text{-measurable sets}\}.$

Proof: 证明的核心与之前一致,是 ε 技巧. 空集零测和单调性易证,仅证明次可加性. 对于一列集合 $\{E_j\}_{j=1}^{\infty}$ 和给定的 $\varepsilon > 0$,有 $\bigcup_{k=1}^{\infty} E_k^j \supseteq E_j$ 和 $\sum_{k=1}^{\infty} \mu_0(E_k^j) < \mu^*(E_j) + \varepsilon/2^j$. 那么有 $\bigcup_{j=1}^{\infty} E_j \subseteq \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} E_k^j$,由此时对 μ^* 的定义,得

$$\mu^*(\bigcup_{j=1}^{\infty} E_j) \le \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \mu_0(E_k^j) \le \sum_{j=1}^{\infty} \mu^*(E_j) + \varepsilon.$$

这表明 μ^* 是一个外测度.

设
$$E \in \mathcal{A}$$
, 有 $E \subseteq \bigcup_{j=1}^{\infty} E_j$ 和给定的 $\varepsilon > 0$ 使得 $\mu^*(E) + \varepsilon > \sum_{j=1}^{\infty} \mu_0(E_j)$, 记 $\tilde{E}_j =$

$$E \cap \left(E_j \setminus \bigcup_{k=1}^{j-1} E_k\right) \in \mathcal{A}$$
. 从而有

$$\mu_0(E) = \sum_{j=1}^{\infty} \mu_0(\tilde{E}_j) \le \sum_{j=1}^{\infty} \mu_0(E_j) < \varepsilon + \mu^*(E) \le \varepsilon + \mu_0(E).$$

可见 $\mu^* \mid_{\mathcal{A}} = \mu_0$.

接下来要对 $\forall E \in \mathcal{A}$ 验证 Carathéodory 条件, 对任给的 $A \in 2^X$, 由定义, 有给定的 $\varepsilon > 0$ 和一列集合 $E_j \in \mathcal{A}$ 使得 $\mu^*(A) + \varepsilon > \sum_{j=1}^{\infty} \mu_0(E_j)$. 那么

$$\mu^*(A) > \sum_{j=1}^{\infty} \mu_0(E_j) - \varepsilon = \sum_{j=1}^{\infty} (\mu_0(E_j \cap E) + \mu_0(E_j \cap E^c)) - \varepsilon$$
$$\geq \sum_{j=1}^{\infty} (\mu^*(A \cap E) + \mu^*(A \cap E^c)) - \varepsilon \geq \mu^*(A) - \varepsilon.$$

这表明 $A \subseteq M$.

Theorem 4.3: property of above exterior measure

 $\mu = \mu^* \mid_{\mathcal{M}}$ 是一个测度. 若 ν 是 \mathcal{M} 上的另一个测度且满足 $\nu \mid_{\mathcal{A}} = \mu_0$, 则有 $\nu(E) \le \mu(E)$ 对 $\forall E \in \mathcal{M}$ 成立, 并且若 $\mu(E) < \infty$, 则还有 $\nu(E) = \mu(E)$.

Proof: 由之前定理, 已知 $\mu = \mu \mid_{\mathcal{M}}$ 是一个完备测度. 对 $\forall E \in \mathcal{M}$, 有 $E \subseteq \bigcup_{j=1}^{\infty} E_j$, 其中 $E_j \in \mathcal{A}$, 由测度的次可加性, 有 $\nu(E) \leq \sum_{j=1}^{\infty} \nu(E_j) = \sum_{j=1}^{\infty} \mu_0(E_j)$. 取下确界得到 $\nu(E) \leq \mu^*(E) = \mu(E)$.

若 $\mu(E) < \infty$, 则证明反向不等式, 需要化归到由 \mathcal{A} 生成的集合上, 因为这是两个测度相关的部分. 设 $E \subseteq \bigcup_{j=1}^{\infty} E_j = F$ 且 $\mu(E) + \varepsilon > \sum_{j=1}^{\infty} \mu_0(E_j)$. 那么自然有 $\mu(F \setminus E) < \varepsilon$. 注意到

$$\nu(F) = \nu\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{N \to \infty} \nu\left(\bigcup_{j=1}^{N} E_j\right) = \lim_{N \to \infty} \mu\left(\bigcup_{j=1}^{N} E_j\right) = \mu(F).$$

因此

$$\mu(E) < \mu(F) = \nu(F) = \nu(F \setminus E) + \nu(E) \le \mu(F \setminus E) + \nu(E) < \varepsilon + \nu(E).$$

特别的, 若 X 是 μ_0 -有限的, 利用标准的圆环技巧, 可以证明 $\nu = \mu$.

最后介绍一个比代数更粗糙一些的概念,这个概念虽然在字面上比较抽象,但反而是我们最熟悉的对象之一.

Definition 4.9: semi-algebra

 $\mathscr{F} \subset 2^X$ 被称为一个半代数, 若满足:

- $(1)\varnothing\in\mathscr{F};$
- $(2)E_1, E_2 \in \mathscr{F} \Rightarrow E_1 \cap E_2 \in \mathscr{F};$

$$(3)E \in \mathscr{F} \Rightarrow E^c = \bigsqcup_{j=1}^{\infty} E_j, \ E_j \in \mathscr{F}.$$

一个最简单的例子就是直线上的全部区间,或者高维空间的矩体,其实是我们很熟悉的例子,接下来的命题是完全符合直觉的.

Proposition 4.1: from semi-algebra to algebra

若 A 是 \mathscr{F} 中集合有限不交并的全体, 那么 A 是一个代数.

Proof: 在计算并集时用到 $A \cup B = (A \setminus B) \cup B$, 都是平凡的计算.

4.3 Product Measure and Fubini Theorem

本节将 Fubini 定理推广到乘积测度空间上,值得注意的是,乘积测度和原本的 Lebesgue 测度有一些微妙的差别. 先给出一些基本的设定,现在考虑的是两个测度空间 $(X_1, \mathcal{M}_1, \mu_1)$ 和 $(X_2, \mathcal{M}_2, \mu_2)$ 的乘积空间 $(X_1 \times X_2, \mathcal{M}_1 \bigotimes \mathcal{M}_2, \mu_1 \times \mu_2)$,这里的 $\mathcal{M}_1 \bigotimes \mathcal{M}_2$ 和 $\mu_1 \times \mu_2$ 都没有定义,记号 $\mathcal{M}_1 \times \mathcal{M}_2 = \{A \times B : A \in \mathcal{M}_1, B \in \mathcal{M}_2\}$ 中的元素称为可测矩形.

为了自然地推广 Fubini 定理, 我们至少应该要求对 $\mathcal{M}_1 \times \mathcal{M}_2$ 有 $\mu_1 \times \mu_2(A \times B) = \mu_1(A)\mu_2(B)$, 现在我们定义 $\mathcal{M}_1 \otimes \mathcal{M}_2 = \sigma(\mathcal{M}_1 \times \mathcal{M}_2)$, 那么我们如何定义 $mu_1 \times \mu_2$.

接下来考虑我们之前定义测度的套路. 注意到下面的命题.

 $\mathcal{M}_1 \bigotimes \mathcal{M}_2$ 是一个半代数.

Proof: 注意到 $(A \times B)^c = (X \times B^c) | |(A^c \times B)|$ 即可.

那么我们如果按照 $\mathcal{M}_1 \times \mathcal{M}_2 \to (\mathcal{A}, \mu_0) \to (2^X \times 2^Y, \mu^*) \to (\mathcal{M}, \mu)$ 的模式, 最终得到的 σ -代数 \mathcal{M} 和我们定义的 $\mathcal{M}_1 \otimes \mathcal{M}_2 = \sigma(\mathcal{M}_1 \times \mathcal{M}_2)$ 是一个对象吗, 其实一般不是, 一个很简单的想法是, \mathcal{M} 是完备的, 但是 $\mathcal{M}_1 \otimes \mathcal{M}_2$ 是最小的, 在非平凡的情况下, 这两个一般是有严格的包含关系的, 比如 Lebesgue 可测集和 Borel 可测集, 但是我们可以利用得到的这个测度.

Definition 4.10: product measure

称 $\mu_1 \times \mu_2 = \mu \mid_{\mathcal{M}_1 \otimes \mathcal{M}_2}$ 是乘积空间 $(X_1 \times X_2, \mathcal{M}_1 \otimes \mathcal{M}_2)$ 上的测度.

因为选择的 σ -代数和之前的有所差别,可以预见定理的一些细节上有所不同. 比如下面的命题. 和原来的情况算是相差了一个零测集.

Proposition 4.3: measurability of slice

 $E \in \mathcal{M}_1 \otimes \mathcal{M}_2 \Rightarrow E_x \in \mathcal{M}_2, E^y \in \mathcal{M}_1$. 对可测函数类似.

Proof: 证明不难, 技巧是去证明所有满足的条件的对象是构成一个 σ-代数, 然后是完全平凡的集合计算.

上面的相当于之前的 Tonelli 定理的第一条, 接下来叙述 Tonelli 定理和 Fubini 定理. 但是由于考虑的 σ -代数与之前不同, 现在算是在一个更小的空间上推广这个定理, 我们接下来的处理也会不同, 先定义一个叫做单调类的对象. 我们将用单调类这个相对具体好操作的对象来重新理解我们的 σ -代数, 从而将我们要处理的命题化简到一个较小的区域上, 然后按照标准的方式把结论提升, 最终得到我们要证明的结论.

Definition 4.11: monotone class

 $\mathscr{F} \subseteq 2^X$ 被称为单调类, 若其满足

$$E_j \in \mathscr{F} \nearrow E \Rightarrow E \in \mathscr{F} \quad E_j \in \mathscr{F} \searrow E \Rightarrow E \in \mathscr{F}.$$

Theorem 4.4: monotone class lemma

由代数 A 生成的单调类 \mathscr{F} 等于 A 生成的 σ -代数 M.

Proof: 由于 \mathcal{M} 已经是单调类, 有 $\mathscr{F} \subseteq \mathcal{M}$. 接下来只要证明 \mathscr{F} 是一个 σ -代数. 设 $\mathscr{F}_E = \{F \in \mathscr{F} : E \setminus F, F \setminus E, E \cap F \in \mathscr{F}\}$. 不难简单计算得到:

- $1. \varnothing, E \in \mathscr{F}$
- 2. $E \in \mathscr{F}_F \Leftrightarrow F \in \mathscr{F}_E$
- $3. \mathscr{F}_E$ 是单调类
- 4. $E \in \mathcal{A} \Rightarrow \mathcal{A} \subseteq \mathscr{F}_E$

由第四条以及第三条,可见 $\forall E \in \mathcal{A} \Rightarrow \mathscr{F} \subseteq \mathscr{F}_E$. 进一步,由 $\forall A \in \mathcal{A} \Rightarrow \mathscr{F} \subseteq \mathscr{F}_A$,那么 $\forall E \in \mathscr{F} \subseteq \mathscr{F}_A \Leftrightarrow A \in \mathscr{F}_E$,从而 $\mathcal{A} \subseteq \mathscr{F}_E$,由第三条,得对 $\forall E \in \mathscr{F}$ 有 $\mathscr{F} \subseteq \mathscr{F}_E$. 至此,直接 计算得到了想要的结论.

Theorem 4.5: Tonelli

X,Y 都是 σ-有限的测度空间, $f \in L^+(X_1 \times X_2)$, 那么

(1)
$$x \mapsto \int_{X_2} f_x d\mu_2 \in L^+(X_1);$$

(2)
$$\int_{X_1 \times X_2} f d(\mu_1 \times \mu_2) = \int_{X_1} \left(\int_{X_2} f_x d\mu_2 \right) d\mu_1.$$

结论对 y 对应成立.

Theorem 4.6: Fubini

X,Y 都是 σ-有限的测度空间, $f \in L^1(X_1 \times X_2)$, 那么

(1) $f_x \in L^1(X_2) \ \mu_1$ -a.e.;

(2)
$$x \mapsto \int_{X_2} f_x d\mu_2 \in L^1(X_1);$$

(3)
$$\int_{X_1 \times X_2} f d(\mu_1 \times \mu_2) = \int_{X_1} \left(\int_{X_2} f_x d\mu_2 \right) d\mu_1.$$

结论对 y 对应成立.

Proof: 按照之前得想法, 我们对示性函数证明 Tonelli 定理即可.

首先假设两个空间都是有限测度的. 设

$$\mathscr{F} = \{E \in \mathcal{M}_1 \bigotimes \mathcal{M}_2 : E$$
满足结论 $\} \subseteq \mathcal{M}_1 \bigotimes \mathcal{M}_2.$

我们断言这是一个单调类. 首先由定义, 显然有 $M_1 \times M_2 \subseteq \mathcal{F}$. 由有限可加性 (或者是线性

性), 由 $\mathcal{M}_1 \times \mathcal{M}_2$ 得到的代数 $\mathcal{A} \subseteq \mathscr{F}$. 现在用 MCT 和测度的连续性来计算最后的结论, 在这一步用到了有限测度的假设.

而对于一般的情况,将两个空间剖分为上升的集合即可,然后还是由测度的连续性得到结论.

其实可以看到, 很多证明的技术是标准的几步走, 想法是直接的.

4.4 Signed Measure

本节将测度的取值推广到广义实数上, 并且在最后以测度来理解积分中的 d 是什么.

Definition 4.12: singed measure

函数 $\nu: \mathcal{M} \to [-\infty, \infty]$ 被称为符号测度, 若满足:

- (1) $\nu(\emptyset) = 0$;
- $(2) \nu$ 至多取到 $\pm \infty$ 之一;

(3)
$$\{E_j\}_{j=1}^{\infty}$$
 是一列不交的集合,则 $\nu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \nu(E_j)$ (右端绝对收敛).

有两个例子来理解符号测度, 并且根据接下来的两个分解定理, 我们可以知道符号测度和这两个例子差不多, 就像我们用单增函数理解 BV 函数一样.

Example 4.2: standard examples of signed measure

- 1. 两个测度之差 $\nu = \mu_1 \mu_2$, 其中一个测度是有限的.
- 2. 可测函数 f 的积分, 且 $\int f^+$ 和 $\int f^-$ 至少一个是有限的.

符号测度仍然具有**测度的连续性**,不再赘述.由于能进行正负取值,因此有如下概念.

Definition 4.13: positive(/negative/null) set

一个集合 E 被称为正集, 若其任意的可测子集 F 都满足 $\nu(F) \ge 0$, 负集和零集类似定义.

Proposition 4.4: subset and countable union of positive set

正集的子集和可数并仍然是正集.

Proof: 一个是定义, 一个是将正集划分为分离的集合后由定义和可数可加性即可验证. □ 现在开始解释第一个例子.

Theorem 4.7: Hahn decomposition

 ν 是测度空间 (X, \mathcal{M}) 上的一个符号测度, 那么 X 可以被分为 $X = P \sqcup N$, 分别为 ν 的正集和负集, 并且若有另一分解 $X = P' \sqcup Q'$, 那么 $P\Delta P'$ 和 $Q\Delta Q'$ 都是 ν 的零集.

Proof: 不失一般性,设 ν 不取 $+\infty$. 想法是先尽可能地把正集拼起来,然后证明剩下的集合是负集.记 $M = \sup_{positive} \{\nu(E)\} < \infty$,那么 $\{P_j\}_{j=1}^{\infty}$ 是一列正集满足 $\nu(P_j) \to M$,现在

记 $P = \bigcup_{j=1}^{\infty} P_j$,由测度的连续性和正集的可数并,有 P 为正集且 $\nu(P) = M$,接下来证明 $N = X \setminus P$ 是负集,用反证法.

注意到存在 $A\subseteq N$ 满足 $\nu(A)>0$,但是 A 不是正集,不然 $P\cup A$ 与 P 的构造矛盾,那么就能在 A 中找到一个符号测度更大的集合,并且类似的,这个集合也不是正集.我们可以想象这个过程下的符号测度是收敛的. 具体来说,我们有一列集合 $A_1\supseteq A_2\supseteq\cdots$ 满足 $0<\nu(A_1)<\nu(A_2)<\cdots$,记 $\nu(A_{k+1})-\nu(A_k)>1/n_k$,其中 n_k 是使得这样的 A_{k+1} 存在的最小正整数,令 $A=\bigcap_{j=1}^\infty A_j$,则有 $\infty>\nu(A)=\lim_{N\to\infty}\nu(A_N)>\sum_{j=1}^\infty \frac{1}{n_j}$. 从而 $n_j\to\infty$. 现在得到的 A 仍然不能是正集,那么有子集 $C\subseteq A\subseteq A_j$,使得 $\nu(C)>\nu(A)+1/n_c\geq\nu(A_j)+1/n_c$,但是 n_c 是一个确定的数,与 n_i 的定义和 $n_i\to\infty$ 的事实矛盾.因此 N 是负集.

对于唯一性, 注意到 $P \setminus P' \subseteq P$ 和 $P \setminus P' \subseteq N'$ 即可.

为了叙述接下来的定理, 我们要引入一个类似于向量正交的概念.

Definition 4.14: mutually singular

测度空间 X 上的两个符号测度 μ 和 ν 被称为相互奇异的, 若存在 X 的分解 $X = E \sqcup F$ 使得 E 是 μ 的零集, F 是 ν 的零集. 记为 $\mu \perp \nu$.

某种意义上,这是在说两个符号测度生活在不交的地方上.

Theorem 4.8: Jordan decomposition

一个符号测度 ν 能被唯一的分解为两个测度 ν^+ 和 ν^- 满足 $\nu = \nu^+ - \nu^-$ 和 $\nu^+ \perp \nu^-$.

Proof: 做 Hahn 分解 $X = P \bigsqcup N$, 记 $\nu^+(E) = \nu(E \cap P)$, $\nu^-(E) = -\nu(E \cap N)$, 那么 $\nu^+ \bot \nu^-$. 若有另一分解 $\nu = \mu^+ - \mu^-$, 诱导了一个 Hahn 分解 $X = E \bigsqcup F$, 那么 $P\Delta E$ 是 ν 的零集. 注意到 $\forall A \in \mathcal{M}$, $\mu^+(A) = \mu^+(A \cup E) = \nu(A \cap E) = \nu(A \cap P) = \nu^+(A)$, 可见分解的唯一性. □ 由上面的定理, 我们看到了其中一个例子的意义. 我们还提到符号测度可以与 BV 函数比较. 事实上, 若定义 $|\nu| = \nu^+ + \nu^-$, 则相当于之前的全变差. 不难验证一个性质:

$$\nu \perp \mu \Leftrightarrow |\nu| \perp \mu \Leftrightarrow \nu^+ \perp \mu, \ \nu^- \perp \mu.$$

我们定义 ν 是有界的若 $|\nu|$ 是有界的, 类似通过 $|\nu|$ 的有限和 σ -有限定义了 ν 的有限和 σ -有限.

利用 Jordan 分解, 我们看到符号测度的积分自然的定义在 $L^1(\nu)=L^1(\nu^+)\cap L^1(\nu^-)$ 上, 形为

$$\int f d\nu = \int f d\nu^+ - \int f d\nu^-.$$

接下来我们来解释第二个例子, 核心是证明 Lebesgue-Radon-Nikodym 定理. 为了证明这个定理, 需要先定义一个叫做关于测度绝对连续的概念.

Definition 4.15: absolutely continuous with respect to measure

符号测度 ν 被称为关于测度 μ 绝对连续, 若 $E \in \mathcal{M}$, $\mu(E) = 0 \Rightarrow \nu(E) = 0$. 记作 $\nu \ll \mu$.

类似上文, 不难证明 $\nu \ll \mu \Leftrightarrow |\nu| \ll \mu \Leftrightarrow \nu^+ \ll \mu$, $\nu^- \ll \mu$. 我们把这个概念叫做绝对连续是有道理的, 因为下面这个命题.

Proposition 4.5:

若有限符号测度 $\nu \ll \mu$, 那么对任给的 $\varepsilon > 0$, 存在 $\delta > 0$, 若 $\mu(E) < \delta$, 则有 $\nu(E) < \varepsilon$.

Proof: 由我们提到的不难验证的性质,不妨设符号测度为测度. 反证法,则存在 $\varepsilon > 0$,对 每个 $n \in \mathbb{N}$,有 E_n 使得 $\nu(E_n) \geq \varepsilon$, $\mu(E_n) < 1/2^n$. 记 $F_k = \bigcup_{j=k}^{\infty} E_j$, $F = \bigcap_{j=1}^{\infty} E_j$. 那么 $\mu(F_k) \leq 2^{1-k}$, $\nu(F_k) \geq \varepsilon$,由测度的连续性导出了矛盾.

接下来开始我们的证明, 首先引进记号

$$d\nu = f d\mu$$

表示关系 $\nu(E) = \int_E f d\mu$.

Lemma 4.1: relation of two finite measure

 ν,μ 为有限测度, 那么要么 $\nu\perp\mu$, 要么 $\exists \varepsilon>0,\ E\in\mathcal{M}$, 使得 E 是 $\nu-\varepsilon\mu$ 的正集且 $\mu(E)>0$.

Proof: 对 X 做关于 $\nu - 1/n\mu$ 的 Hahn 分解 $X = P_n \bigsqcup N_p$, 令 $P = \bigcup_{j=1}^{\infty} P_n$, $N = P^c$. 那么 N 是 $\nu - 1/n\mu$ 的负集, 那么可以知道 $0 \le \nu(N) \le 1/n\mu(N)$, 也就是 $\nu(N) = 0$. 若 $\mu(P) = 0$, 则 $\nu \perp \mu$, 若不然, $\mu(P) > 0 \Rightarrow \mu(P_n) > 0$ 且 P_n 是 $\nu - 1/n\mu$ 的正集.

Theorem 4.9: Lebesgue-Radon-Nikodym

设 ν 是一个 σ -有限符号测度, μ 是一个 σ -有限测度, 那么存在唯一的符号测度 λ 和 ρ 使得

$$\lambda \perp \mu$$
, $\rho \ll \mu$, $\nu = \lambda + \rho$.

Proof: 首先证明有限测度的情况. 我们通过构造函数的办法将符号测度中的绝对连续部分分出, 剩下的部分按照直觉应该是与测度奇异的部分. 令

$$\mathscr{F} = \{ f : \int_{E} f d\mu \le \nu(E), \ \forall E \in \mathcal{M} \}.$$

由 $0 \in \mathcal{F}$, 知 $\mathcal{F} \neq \emptyset$. 注意到若 $f,g \in \mathcal{F}$, 那么 $h = \max(f,g) \in \mathcal{F}$. 这是因为令 $A = \{f > g\} \cap E$ 可测, 那么

$$\int_E h d\mu = \int_{E \backslash A} g d\mu + \int_A f d\mu \le \nu(E \backslash A) + \nu(A) \le \nu(E).$$

令 $a=\sup\{\int_X fd\mu: f\in\mathscr{F}\}$,有 $a\leq\nu(X)<\infty$. 设 $\int_X f_nd\mu\to a$,令 $g_n=\max(f_1,\cdots,f_n)$,那么 $g_n\nearrow f$,由 MCT 可知 $\int_X fd\mu=a$. 我们断言 $d\lambda=d\nu-fd\mu$ 与 μ 相互奇异. 由对 \mathscr{F} 的假设, λ 是正测度.若断言不成立,则存在 $\varepsilon>0$,使有关于 $\nu-\varepsilon\mu$ 的正集 E 且 $\mu(E)>0$. 那么得到了

$$\varepsilon \chi_E d\mu \le d\lambda = d\nu - f d\mu.$$

积分知我们找到了一个积分值比 a 更大的函数 $f + \varepsilon \chi_E$.

对于唯一性, 仅需做差后验证 $\lambda - \lambda'$ 和 μ 相互奇异且关于其绝对连续, 然后则知唯一性. 对于一般的情况, 我们利用加细, 得到公共的有限测度圆环, 在圆环上做分解后验证这些符号测度 (测度) 可以拼回去即可.

对于特殊的情况 $\nu \ll \mu$, 我们就能找到 $d\nu = f d\mu$, 称这个 μ -a.e. 函数类为 ν 关于 μ 的 Radon-Nikodym 导数, 记作 $\frac{d\nu}{d\mu}$. 不难证明, 若 $\nu \ll \mu$, 两者为 σ -有限的 (符号) 测度. 那么 $g \in L^1(\nu) \Rightarrow g(\frac{d\nu}{d\mu}) \in L^1(\mu)$, 且

$$\int g d\nu = \int g \frac{d\nu}{d\mu} d\mu.$$

以上完成了本节的最终目标.