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Before everything, I need to difine my notations about Fourier Analysis.
1. DN (x) =

∑N
n=−N e2πinx is the N-th Dirichlet kernel.

2. FN (x) = 1
N

∑N−1
k=0

∑k
j=−k e

2πijx is the N-th Fejer kernel.
3. SN (f) = (DN ∗ f)(x).
4. FN (f) = (FN ∗ f)(x).
5. S is the Schwartz function space.
6. for f ∈ S , Poisson summation formula is

∞∑
n=−∞

f(x+ n) =

∞∑
n=−∞

f̂(n)e2πinx

Today, I’m going to introduce a continuous but nowhere differentiable function by
Fourier Analysis. First of all, I would like to introduce some solutions to this problem.
An interesting method to this problem is to prove that

En = {f ∈ C[0, 1] : ∃x0, s.t. |f(x)− f(x0)| ≤ n|x− x0| for ∀x ∈ [0, 1]}

is a nowhere dense set. Then one can see the target result by Baire Catagory Theo-
rem. However, it’s not a constructive proof, and we have learnt a constructive proof in
Mathematical Analysis A3, which is related to the concept of fractal naturally. Now,
I’m going to prove an example which in fact give a family of continuous but nowhere
differentiable functions. My main theorem is the one below.

Theorem 1. f =
∞∑

n=1
2−nαe2πi2

nx is continuous but nowhere differentiable for α ∈

(0, 1].

Why do we consider such a function? My opinion is that, we must make leading
term have high frequency and oscillate.(It’s the key point! Latter discussion about decay
means is based on the point!)

I will prove the theorem by dividing it into two cases that one is α ∈ (0, 1) and the
other is α = 1. Indeed, the proof of latter one is harder the former one and based on
the former one. Hence, I will focus on the case α ∈ (0, 1) now.

Let’s think a natural question, why the function can’t be differentiable, and what
will happen if it can be differentiated term by term.

f ′ ∼ 2πi

∞∑
n=1

2n(1−α)e2πi2
nx
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It seems that, the partial sum of derivation can’t converge, that is to say, we can estimate
Sn(f)

′ concretely. But in Fourier Analysis, we have known that, Dirichlet kernel is not
a good kernel, so we shall not deal with it casually. Fortunately, f is a funciton with
lacunary property, which means that term gaps have exponential growth. Hence we
can change it into the difference of two cesaro sums.

Here I think we need to explain more about the decay means in the book. As what
I said, Dirichlet kernel is not a good kernel, so we should avoid dealing with it since
we need more precious caculation. And as for Fejer kernel, it is a good kernel, but it
actually changes almost every term in our original funciton. And for our need, we shall
preserve more term of high frequency as we can, since they are what we need to lead
bad differentiability.

Sn(f) =

n∑
k=1

2−kαe2πi2
kx = 2σ2n′(f)− σn′(f) := ∆′

n(f)

where n′ has the form 2k, and n′ ≤ n < 2n′.
Now, we can estimate Fn(f)

′(x0) if f is differentiable at x = x0. Fejer kernel is a
triangle polynomial with form

Fn(x) =
1

n

n−1∑
k=0

k∑
j=−k

e2πijx

Then we have natural estiamtion that

|F ′
n| ≤ C1n

2

|Fn|(x) =
sin2(nπx)
n sin2(πx)

⇒ |F ′
n|(x) ≤

C2

|x|2

Hence, we calcuate σn(f)
′(x0) below.

|σn(f)
′(x0)| =

∣∣∣∣∣
∫ 1/2

−1/2

f(x0 − t)F ′
n(t)dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1/2

−1/2

(f(x0 − t)− f(x0))F
′
n(t)dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|t|≤1/n

+

∫
1/n≤|t|≤1/2

(f(x0 − t)− f(x0))F
′
n(t)dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|t|≤1/n

(f(x0 − t)− f(x0))F
′
n(t)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫
1/n≤|t|≤1/2

(f(x0 − t)− f(x0))F
′
n(t)dt

∣∣∣∣∣
= O(logn) +O(1) = O(logn)

Hence, we shall see ∆n(f)
′(x0) = O(logn). However, we also see that, if n = 2k−1,

we have∆2n(f)−∆n(f) = S2n(f)−Sn(f) = 2−kαe2πi2
kx. Then, we actually have

|∆2n(f)
′(x0)−∆n(f)

′(x0)| = 2k(1−α) = n1−α ≫ O(logn)
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Therefore, f is nowhere differentiable as a complex-valued function. However, we actu-
ally aim to find a nowhere differentiable real-valued function, so we naturally consider
its real part or imaginary part.

Take its real part and imaginary part, we obtain

Re(f) =

∞∑
n=1

2−nα cos(2nx) Im(f) =

∞∑
n=1

2−nα sin(2nx)

Let g denote its real part. If g is differentiable at x = x0, by our estiamtion above,
we have

∆n(g)
′ = O(logn)

whenever |h| ≤ c
n .

Note that∆2n(g)−∆n(g) = 2−kα cos(2kx), here n = 2k−1. Then we have

|2−kα sin(2k(x0 + h))| = O(logn)

Now, we only need to let δ denote the distance between 2kx and the nearest number of
the form (k + 1

2π), and we take h = δ/2k. Done.
Before considering the case for α = 1, we conclude what we have done in the case

α ∈ (0, 1). We initially have a Fourier series, and we use a good kernel, modified Fejer
kernel, to cut it, which preserves the information of the former n term, and has good
decay property at the boundary so that it can converge to f. Finally, we estimate the
order of its one term derivation, and it leads our target.

By differentiating term by term, we shall see the intrinsic difference to the case
α ∈ (0, 1). In this case, we shall focus on only one term of high frequency. So, to
improve its decay speed, we consider another kernel. Using bump function, we can
obtain the function below.

ϕ(ξ) =


1 |ξ| ≤ 1,

0 |ξ| ≥ 2,

C∞connection otherwise.

Then ∆̃N (x) =
∑∞

n=−∞ Φ(n/N)e2πinx is a new kernel, but this form is not suitable
for later integral estiamtion, so we shall change its form. Using inversion formula, we
obtain a new function ϕ. Since Φ is compact supported, let ϕ(x) denote Φ̌(x), then
ϕ ∈ S . Hence we can rewrite the kernel by Poisson sum formula

∆̃N (x) =

∞∑
n=−∞

ϕN (x+ n)

where ϕN (x) = Nϕ(Nx) so that ϕ̂N (ξ) = Φ(ξ/N).
Noting the construction, we can immediately see ∆N ′(f) = SN (f), where N ′ is

the largest integer of the form 2k with N ′ ≤ N .
For convenience, we can prove a strong result to complete its proof.
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Theorem 2. If f ′(x0) exists, then

(f ∗ ∆̃′
N )(x0 + hN ) → f ′(x0) as N → ∞

whenever |hN | ≤ c
N .

To prove the result, we need the following lemma.

Theorem 3. Set ∆̃N (x) = ϕN (x) + EN (x), then
1. sup|x|≤1/2 |E′

N (x)| → 0 as N → ∞
2. |∆̃′

N (x) ≤ cN2

3. |∆̃′
N (x)| ≤ c

N |x|3

4.
∫
|x|≤1/2

∆̃′
N (x)dx = 0

5.
∫
|x|≤1/2

x∆̃′
N (x)dx → −1 as N → ∞.

Proof. 1. EN =
∑

n ̸=0 Nϕ(N(x + n)), then E′
N =

∑
n ̸=0 N

2ϕ(N(x + n)). Since
ϕ ∈ S , we have ϕ′ ∈ S and exists C > 0 s.t. |ϕ′

N (x) ≤ C
|N(x+n)|k for k>2.

2. |∆̃′
N (x)| ≤ C|

∑
0<|n|≤2N n = CN2.

3. in 1., take k=3.
4. it’s periodic.
5. integrating by part, we have∫

|x|≤1/2

x∆̃N (x)dx = ∆̃N (1/2)− 1 → −1 as N → ∞

Now, we start proving the strong result.

Proof. Let δ(t) = f(x0 + hN − t) − f(x0 + hN ) + tf ′(x0), so δ(t) → 0 as t → 0.
Then we have the following integral caculation∣∣∣∣∣(f ∗ ∆̃′

N )(x+ hN ) +

∫ 1/2

−1/2

t∆̃′
N (t)f ′(x0)dt

∣∣∣∣∣ ≤ ∣∣∣δ(t)|t||∆̃′
N (t)dt

∣∣∣
≤

∫
|x|≤k/N

+

∫
1/2≤|x|>k/N

∗ = I1 + I2

where k is an arbitrary positive integer. We shall estimate the two parts by previous
estiamtions.

I1 ≤ sup
|t|≤k/N

|δ(t)|
∫
|x|≤k/N

|t||∆̃′
N (t)|dt ≤ sup

|t|≤k/N

|δ(t)|
∫
|x|≤k/N

|t|cN2dt

≤ sup
|t|≤k/N

|δ(t)| k
N

2k

N
cN2 → 0 as N → ∞

I2 ≤ C

∫
k/N≤|t|≤1/2

|t| c

N |t|3
dt = C

∫
k/N≤|t|≤1/2

1

N |t|2
≤ C

k
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Then, we finally have

|(f ∗ ∆̃′
N )(x+ hN )− f(x0)| ≤ c/k

as N goes to infinity. And since k is arbitrary and c is a constant which is independent
with k, so we have done.

Then we shall see, |(f ∗ ∆̃2N )′(x0)− (f ∗ ∆̃N )′(x0)| → 0, but |(f ∗ ∆̃2N )′(x0)−
(f ∗ ∆̃N )′(x0)| = 2π, so it leads contradiction. Since we have left hN ’s room, we can
repeat what we have done in case α ∈ (0, 1), and then we approach our target!
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